Skip to main content

Advertisement

Log in

Efficient dye-sensitised solar cell based on uniform In-doped TiO2 spherical particles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A facile deposition of uniform photoanode electrodes by a novel anatase-stabilised gel for dye-sensitised solar cells (DSCs) applications is reported. Highly crystalline anatase–TiO2 phase is stabilised by indium nitrate at 500 °C. The electrodes are composed of uniform spherical particles with diameter around 3 µm, containing small nanoparticles with the average grain size of 40 nm, deposited by dip-coating method. X-ray photoelectron spectroscopy reveals that 6 at.% In3+ was incorporated into titania crystal lattice and stabilised anatase phase by limiting the transformation from anatase to rutile phase. UV–Visible spectra show that the stabilised film has lower band gap energy than that of undoped TiO2, extending the absorption of TiO2 into visible region. Electrochemical impedance spectroscopy demonstrates that the anatase-stabilised DSC enjoys less recombination and internal resistances, improving the photovoltaic performance of the cell. The anatase-stabilised DSC has higher power conversion efficiency of 7.48 % than that of unstabilised cell (6.37 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Oregano, M. Grätzel, Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  2. B. Tan, Y. Wu, J. Phys. Chem. B 110, 15932 (2006)

    Article  Google Scholar 

  3. S. Ito, N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Thin Solid Films 516, 4613 (2008)

    Article  ADS  Google Scholar 

  4. T.H. Tsai, S.C. Chiou, S.M. Chen, Int. J. Electrochem. Sci. 63, 333 (2011)

    Google Scholar 

  5. Y. Chena, E. Stathatosb, D.D. Dionysioua, J. Photochem. Photobiol. A 15, 192 (2009)

    Article  Google Scholar 

  6. Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.G. Park, K. Kim, W.I. Lee, Adv. Mater. 21, 3668 (2009)

    Article  Google Scholar 

  7. J. Xi, Q. Zhang, S. Xie, S. Yodyingyong, K. Park, Y. Sun, J. Li, G. Cao, Nanosci. Nanotechnol. Lett. 3, 690 (2011)

    Article  Google Scholar 

  8. A.M. Bakhshayesh, M.R. Mohammadi, Electrochim. Acta 89, 90 (2013)

    Article  Google Scholar 

  9. N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104(38), 8989 (2000)

    Article  Google Scholar 

  10. S.C. Xua, S.S. Pan, Y. Xu, Y.Y. Luo, Y.X. Zhang, G.H. Lia, J. Hazard. Mater. 283, 7 (2015)

    Article  Google Scholar 

  11. S. Muduli, O. Game, V. Dhas, K. Vijayamohanan, K.A. Bogle, N. Valanoorb, S.B. Ogale, Sol. Energy 86, 1428 (2012)

    Article  ADS  Google Scholar 

  12. G.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mater. Lett. 65, 2051 (2011)

    Article  Google Scholar 

  13. M. Tahir, N.S. Amin, Appl. Catal. B 162, 98 (2015)

    Article  Google Scholar 

  14. X. Sun, Q. Zhang, Y. Liu, N. Huang, P. Suna, T. Peng, T. Peng, X.Z. Zhao, Electrochim. Acta 129, 276 (2014)

    Article  Google Scholar 

  15. S. Ito, P. Liska, P. Pechy, U. Bach, M.K. Nazeeruddin, A. Kay, S.M. Zekeeruddin, M. Grätzel, Chem. Commun. 34, 4351 (2005)

    Article  Google Scholar 

  16. R.A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957)

    Article  Google Scholar 

  17. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, Lawrence, 2001)

    Google Scholar 

  18. E. Wang, W. Yang, Y. Cao, J. Phys. Chem. C 113, 20912 (2009)

    Article  Google Scholar 

  19. D.A. Shirley, Rev. B 5, 4709 (1972)

    Article  Google Scholar 

  20. J. Tauc, Amorphous and Liquid Semiconductors, 1st edn. (Plenum Press, London and New York, 1974)

    Book  Google Scholar 

  21. H. Alarcon, G. Boschloo, P. Mendoza, J.L. Solis, A. Hagfeldt, J. Phys. Chem. B 109, 18483 (2005)

    Article  Google Scholar 

  22. C. Feigenbrugel, S.L. Loew, P. Calvé, J. Mirabel, J. Photochem. Photobiol. A 174(76), 76 (2005)

    Article  Google Scholar 

  23. C. Longo, J. Freitas, M.A. De Paoli, J. Photochem. Photobiol. A 159, 33 (2003)

    Article  Google Scholar 

  24. L.W. Zhang, H.B. Fu, Y.F. Zhu, Adv. Funct. Mater. 18, 2180 (2008)

    Article  Google Scholar 

  25. A.A.B.F. Martinson, M.S. Goes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, J. Phys. Chem. A 113, 4015 (2009)

    Article  Google Scholar 

  26. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Gratzel, J. Phys. Chem. C 111, 6550 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Iran Nanotechnology Initiative Council is gratefully acknowledged for partially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bakhshayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshayesh, A.M., Farajisafiloo, N. Efficient dye-sensitised solar cell based on uniform In-doped TiO2 spherical particles. Appl. Phys. A 120, 199–206 (2015). https://doi.org/10.1007/s00339-015-9150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9150-z

Keywords

Navigation