Skip to main content

Advertisement

Log in

Heredity of medium-range order structure from melts to the microstructure of Ni–Cr–W superalloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structure factor S(Q), intensities and pair distribution function g(r) of liquid Ni–Cr–W superalloy at different temperatures have been measured by a high-temperature X-ray diffractometer. Coordination N min, correlation radius r c, the nearest atomic distance r 1, solidification microstructure and compression performance have been studied. The results show that a pre-peak exists on the structure factor curve at the liquidus temperature, and a fine structure of equiaxed, globular and non-dendritic primary grains can be achieved by casting the alloy at liquidus temperature. Liquid structure feature of Ni–Cr–W superalloy is found to depend on temperature. During the solidification, some structural information carried by the medium-range order (MRO) structure is inherited from the melt to the microstructure, which is beneficial for grain refinement. The maximum yield strength measured from typical microstructure of the equiaxed and non-dendritic grains at 1400 °C is 543 MPa. The results show that refinement and non-dendritic grain is beneficial to the improvement of the yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Dahlborg, M. Calvo-Dahlobrg, P.S. Popel, V.E. Sisorov, Eur. Phys. J. B 14, 639 (2000)

    Article  ADS  Google Scholar 

  2. S.S. Nene, B.P. Kashyap, N. Prabhu, Y. Estrin, T. AlSamman, J. Alloys Compd. 615, 501 (2014)

    Article  Google Scholar 

  3. K. Xia, G. Tausig, Mater. Sci. Eng., A 246, 1 (1998)

    Article  Google Scholar 

  4. Y.Q. Wu, X.F. Bian, Q.G. Meng, Mater. Lett. 61, 2434 (2007)

    Article  Google Scholar 

  5. Y.W. Bai, X.F. Bian, X.Q. Lv, S.P. Pan, J.Y. Qin, X.B. Qin, L.N. Hu, J. Appl. Phys. 112, 83524 (2012)

    Article  Google Scholar 

  6. M. Couillard, S. Pratontep, R.E. Palmer, Appl. Phys. Lett. 82, 2595 (2003)

    Article  ADS  Google Scholar 

  7. A. Stefan, F. Daan, Nature 409, 1020 (2001)

    Article  Google Scholar 

  8. M.Y. Xie, X.F. Li, G.B. Xu, Y.T. Zhou, F.Q. Zu, Appl. Phys. A 113, 431 (2013)

    Article  ADS  Google Scholar 

  9. W.Z. Jin, F.D. Bai, T.J. Li, G.M. Yin, Mater. Lett. 62, 1585 (2008)

    Article  Google Scholar 

  10. U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)

    Article  ADS  Google Scholar 

  11. P. Srirangam, M.J. Kramer, S. Shankar, Acta Mater. 59, 503 (2011)

    Article  Google Scholar 

  12. K. Yamanka, M. Mori, A. Chiba, Mater. Lett. 116, 82 (2014)

    Article  Google Scholar 

  13. L. Zheng, R. Chellali, R. Schlesiger, D. Baither, G. Schmitz, Scripta Mater. 65, 428 (2011)

    Article  Google Scholar 

  14. L. Zheng, R. Chellali, R. Schlesiger, Y. Meng, D. Baither, G. Schmitz, Scripta Mater. 68, 825 (2013)

    Article  Google Scholar 

  15. Y. Liu, R. Hu, J.S. Li, H.C. Kou, H. Chang, H.Z. Fu, Mater. Sci. Eng., A 508, 141 (2009)

    Article  Google Scholar 

  16. J.Y. Kang, S.H. Zhu, E. Wei, E. Schwegler, Y.H. Kim, Phys. Rev. Lett. 108, 115901 (2012)

    Article  ADS  Google Scholar 

  17. C.J. Cui, J. Zhang, K. Wu, Y.P. Ma, L. Liu, H.Z. Fu, Phys. B 407, 3566 (2012)

    Article  ADS  Google Scholar 

  18. W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35, 444 (1964)

    Article  ADS  Google Scholar 

  19. J. Krogh-Moe, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 9, 951 (1956)

    Google Scholar 

  20. N. Norman, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 10, 370 (1957)

    MathSciNet  Google Scholar 

  21. D.T. Cromer, J.B. Mann, J. Chem. Phys. 47, 1892 (1967)

    Article  ADS  Google Scholar 

  22. O.S. Roik, O.V. Samsonnikov, V.P. Kazimirov, V.E. Sokolskii, J. Mol. Liq. 151, 42 (2010)

    Article  Google Scholar 

  23. Y.J. Ustinovshikov, J. Alloys Compd. 543, 227 (2012)

    Article  Google Scholar 

  24. Y. Kita, J.B. Van Zytveld, Z. Morita, T. Iida, J. Phys.: Condens. Matter 6, 811 (1994)

    ADS  Google Scholar 

  25. L. Bolzoni, M. Nowak, N. Hari Babu, J. Alloys Compd. 623, 79 (2015)

    Article  Google Scholar 

  26. L.S. Wang, J. Shen, L. Wang, Y.J. Du, H.Z. Fu, Appl. Phys. A 114, 769 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (No. 2011CB610404), National Science and Technology Major Project (No. 2009ZX04006) and the Program of Introducing Talents of Discipline to Universities (No. B08040). The authors are grateful to Dr. Xiufang Bian of Shandong University for assistance in building the experimental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Hu, R., Wang, J. et al. Heredity of medium-range order structure from melts to the microstructure of Ni–Cr–W superalloy. Appl. Phys. A 120, 183–188 (2015). https://doi.org/10.1007/s00339-015-9148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9148-6

Keywords

Navigation