Skip to main content
Log in

The fusion process of successive droplets impinging onto a substrate surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Successive deposition of uniform metal droplet is a new kind of 3D printing and rapid prototyping technology. This paper presents a systematic numerical investigation of the transient transport phenomenon during the fusion of successive droplets impinging onto a substrate surface. The physical mechanisms of the fusion process, including the bulk liquid, capillarity effects at the liquid–solid interface, heat transfer, and solidification, are identified and quantified numerically. The 3D models based on a volume of fluid method were developed to investigate the successive deposition of molten metal droplets on a horizontally aluminum substrate surface. The numerical models are validated with experiments. The comparison between numerical simulations and experimental findings shows a good agreement. The effects of relative distances between two successive molten droplets on the end-shapes of impact regime are examined. This investigation is essential to implement effective process control in metal micro-droplet deposition manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Gao, A. Sonin, Proc. R. Soc. Lond. 444, 533 (1994)

    Article  ADS  Google Scholar 

  2. L.J. Zarzalejo, K.S. Schmaltz, C.H. Amon, Heat Mass Transf 34, 477 (1999)

    Article  ADS  Google Scholar 

  3. J.P. Kruth, Ann. CIRP 40(2), 603 (1991)

    Article  Google Scholar 

  4. M. Orme, J. Mater. Eng. Perform. 2(3), 399 (1993)

    Article  Google Scholar 

  5. M. Orme, C. Huang, J. Courte. Miner. Metals Mater. Soc., Warren dale, PA, 125(1996)

  6. M.E. Orme, C. Huang, J. Courter, At. Sprays 6, 305 (1996)

    Article  Google Scholar 

  7. Q. Liu, M. Orem, J. Eng. Manuf. 215(10), 1333 (2001)

    Article  Google Scholar 

  8. C.H. Amon, K.S. Schmaltz, R. Merz et al., J. Heat Transf. 118(1), 164 (1996)

    Article  Google Scholar 

  9. M. Neagu, Technol. Mech. Eng. 5, 35 (2004)

    MathSciNet  Google Scholar 

  10. J.D. Benrnardin, C.J. Stebbins, I. Mudawar, Int. J. Heat Mass Transf. 40(2), 247 (1997)

    Article  Google Scholar 

  11. G.E. Cossali, M. Marengo, M. Santini, Int. J. Heat Mass Transf. 29, 167 (2008)

    Google Scholar 

  12. M. Pasandideh-Fard, S.D. Aziz, S. Chandra, J. Mostaghimi, Int. J. Heat Fluid Flow 22, 201 (2001)

    Article  Google Scholar 

  13. N. Nikolopoulos, A. Theodorakakos, G. Bergeles, Int. J. Heat Mass Transf. 50, 303 (2007)

    Article  MATH  Google Scholar 

  14. G. Strotos, M. Gavaises, Andreas, Int. J. Heat Mass Transf. 45, 213 (2007)

    Google Scholar 

  15. J. Fukai, Y. Shiliba, Yanmaoto et al., Phys. Fluids 7, 236 (1995)

    Article  ADS  Google Scholar 

  16. L.J. Zarzalejo, K.S. Schmaltz, C.H. Amon, Int. J. Heat Mass Transf. 34, 477 (1999)

    Article  ADS  Google Scholar 

  17. S. Haferl, D. Poulikakos, J. Heat Mass Transf. 46, 535 (2003)

    Article  Google Scholar 

  18. Y.P. Chao, L.H. Qi et al., China Mech Eng 20, 207 (2009)

    Google Scholar 

  19. M. Fang, S. Chandra, C.B. Park, J. Manuf. Sci. Eng. 129, 311 (2007)

    Article  Google Scholar 

  20. C. Escure, M. Vardelle, Plasma Chem. Plasma Process. 23(2), 185 (2003)

    Article  Google Scholar 

  21. J. Luo, L.H. Qi et al., Int. J. Mach. Tools Manuf. 48, 289 (2008)

    Article  Google Scholar 

  22. M. Fang, S. Chandra, C.B. Park, J. Heat Transf. 131, 112101 (2009)

    Article  Google Scholar 

  23. X.S. Jiang, L.H. Qi, J. Luo, H. Huang, J.M. Zhou, Int. J. Adv. Manuf. Technol. 49, 535 (2010)

    Article  Google Scholar 

  24. V. Butty, D. Poulikakos, J. Giannakouros, Int. J. Heat Fluid Flow 23, 232 (2002)

    Article  Google Scholar 

  25. S. Kamnis, S. Gu, T.J. Lu, C. Chen, J. Phys. D Appl. Phys. 41, 165303 (2008)

    Article  ADS  Google Scholar 

  26. R. Ghafouri-Azar, S. Shakeri, S. Chandra, J. Mostaghimi, Int. J. Heat Mass Transf. 46, 1395 (2003)

    Article  Google Scholar 

  27. Q. Xu, V.V. Gupta, E.J. Lavernia, Acta Mater. 48, 835 (2000)

    Article  Google Scholar 

  28. B. Kang, J. Waldvogel, D. Poulikakos, J. Mater. Sci. 30, 4912 (1995)

    Article  ADS  Google Scholar 

  29. R.K. Chin, J.L. Beuth, C.H. Amon, J. Manuf. Sci. Eng. 123, 623 (2001)

    Article  Google Scholar 

  30. S. Alavi, M. Passandideh-Fard, Front. Heat Mass Transf. (FHMT) 2, 023007 (2011)

    Google Scholar 

  31. Y.Z. Zheng et al., Appl. Surf. Sci. 317, 526 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research is financially supported by the National Natural Science Foundation of China under Grant No. 31370944, the Natural Science Foundation of Shaanxi province (Grant 2014JQ7238), and China Postdoctoral Science Foundation (Grant 2014M560764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengYing Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wei, Z., Du, J. et al. The fusion process of successive droplets impinging onto a substrate surface. Appl. Phys. A 120, 35–42 (2015). https://doi.org/10.1007/s00339-015-9146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9146-8

Keywords

Navigation