Skip to main content
Log in

Investigation of pseudo boehmite nanoparticles as an antibacterial agent

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pseudo boehmite nanoparticles were synthesized by using bovine serum albumin as the structure-directing agent. The morphology and crystal phase of the pseudo boehmite nanoparticles were determined by transmission electron microscopy, X-ray diffractograms and Fourier transform infrared spectroscopy. The antibacterial behaviors of pseudo boehmite nanoparticles were investigated using Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) as model organisms. The results indicated that the synthesized pseudo boehmite nanoparticles showed high antibacterial activity when compared to plain aluminum oxide, which was assessed by measuring the growth inhibition and testing the zone of inhibition. The plausible mechanism of antibacterial behavior was attributed to the generation of reactive oxygen species by pseudo boehmite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.G. You, C.M. Han, X.G. Wang, Y.R. Zheng, Q.Y. Li, X.L. Hu, H.F. Sun, The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol. Biol. Rep. 39, 9193 (2012)

    Article  Google Scholar 

  2. S. Feng, W.C. Zeng, F. Luo, J. Zhao, Z.R. Yang, Q. Sun, Antibacterial activity of organic acids in aqueous extracts from pine needles (Pinus massoniana Lamb.). Food Sci. Biotechnol. 19, 35 (2010)

    Article  Google Scholar 

  3. B. Chudasama, A.K. Vala, N. Andhariya, R.V. Upadhyay, R.V. Mehta, Enhanced antibacterial activity of bifunctional Fe3O4–Ag core-shell nanostructures. Nano Res. 2, 955 (2009)

    Article  Google Scholar 

  4. S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, M.R. Park, D.N. Kwon, J.H. Kim, Antibacterial activity of dithiothreitol reduced graphene oxide. J. Ind. Eng. Chem. 19, 1280 (2013)

    Article  Google Scholar 

  5. J. Chen, M.L. Yang, J. Zeng, K. Gao, New broad-spectrum antibacterial and antifungal alkaloids from Kopsia hainanensis. Phytochem. Lett. 7, 156 (2014)

    Article  ADS  Google Scholar 

  6. Y.M. Wang, G.J. Du, H. Liu, D. Liu, S.B. Qin, N. Wang, C.G. Hu, X.T. Tao, J. Jiao, J.Y. Wang, Z.L. Wang, Nanostructured sheets of Ti–O nanobelts for gas sensing and antibacterial applications. Adv. Funct. Mater. 18, 1131 (2008)

    Article  Google Scholar 

  7. F. Gao, H. Pang, S.P. Xu, Q.Y. Lu, Copper-based nanostructures: promising antibacterial agents and photocatalysts. Chem. Commun. 24, 3571 (2009)

    Article  Google Scholar 

  8. L.Z. Zhao, H.R. Wang, K.F. Huo, L.Y. Cui, W.R. Zhang, H.W. Ni, Y.M. Zhang, Z.F. Wu, P.K. Chu, Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32, 5706 (2011)

    Article  Google Scholar 

  9. H. Negi, T. Agarwal, M.G.H. Zaidi, R. Goel, Comparative antibacterial efficacy of metal oxide nanoparticles against gram negative bacteria. Ann. Microbiol. 62, 765 (2012)

    Article  Google Scholar 

  10. R. Wahab, A. Mishra, S. Yun, Y.S. Kim, H.S. Shin, Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl. Microbiol. Biotechnol. 87, 1917 (2010)

    Article  Google Scholar 

  11. L.L. Zhang, Y.H. Jiang, Y.L. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O’Neill, D.W. York, Mechanistic investigation into antibacterial of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 12, 1625 (2010)

    Article  Google Scholar 

  12. J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO, CaO) by conductimetric assay. J. Microbiol. Methods 54, 177 (2003)

    Article  Google Scholar 

  13. G.Y. Han, S.H. Park, T.C. Yoon, Antimicrobial activity of Ca(OH)2 containing pastes with Enterococcus faecalis in vitro. J. Endod. 27, 328 (2001)

    Article  Google Scholar 

  14. O. Akhavan, R. Azimirad, S. Safa, E. Hasan, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 21, 9634 (2011)

    Article  Google Scholar 

  15. C.X. Dong, J. Cairney, Q.H. Sun, O.L. Maddan, G.H. He, Y.L. Deng, Investigation of Mg(OH)2 nanoparticles as an antibactericidal agent. J. Nanopart. Res. 12, 2101 (2010)

    Article  Google Scholar 

  16. M. Machida, M. Takenami, H. Hamada, Intercalation of pseudo-boehmite: a novel preparation route to microporous Al–Ti oxide. Solid State Ionics 172, 125 (2004)

    Article  Google Scholar 

  17. Y.H. Cai, M.M. Zhao, H.T. Wang, Y.G. Li, Z.G. Zhao, Synthesis and properties of flame-retardant poly(vinyl alcohol)/pseudo-boehmite nanocomposites with high transparency and enhanced refractive index. Polym. Degrad. Stab. 99, 53 (2014)

    Article  Google Scholar 

  18. N.V. Garderen, F.J. Clemens, C.G. Aneziris, T. Graule, Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application. Ceram. Int. 38, 5481 (2012)

    Article  Google Scholar 

  19. Y. Cao, H.J. Wang, C. Cao, Y.Y. Sun, L. Yang, Y.N. Zhang, Synthesis and anti-ultraviolet properties of monodisperse BSA-conjugated zinc oxide nanoparticles. Mater. Lett. 66, 340 (2011)

    Article  Google Scholar 

  20. S. Jadhav, S. Gaikwad, M. Nimse, A. Rajbhoj, Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Cluster Sci. 22, 121 (2011)

    Article  Google Scholar 

  21. A.J. Kora, J. Arunachalam, Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J. Microbiol. Biotechnol. 27, 1209 (2011)

    Article  Google Scholar 

  22. S.K. Mahto, C. Park, T.H. Yoon, S.W. Rhee, Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells. Toxicol. In Vitro 24, 1070 (2010)

    Article  Google Scholar 

  23. X.L. An, Q.Z. Li, H.P. Liu, G.R. Zhang, FT-IR study of the interaction between bovine serum albumins and cetyltrimethyl ammonium bromide. J. Southwest China Normal Univ Nat. Sci. 30, 699 (2005)

    Google Scholar 

  24. Q. Ye, R. Hu, Z.Y. Lin, J. Chang, In situ ATR-FTIR study on the interaction of HA with bovine serum albumin. Chem. Res. Chin. Univ. 27, 1552 (2006)

    Google Scholar 

  25. M.P. Brynildsen, J.A. Winkler, C.S. Spina, I.C. Macdonald, J.J. Collins, Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol. 31, 160 (2013)

    Article  Google Scholar 

  26. R.K. Dutta, B.P. Nenavathua, M.K. Gangishettya, A.V.R. Reddy, Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B 94, 143 (2012)

    Article  Google Scholar 

  27. H.Y. Xu, F. Qu, H. Xu, W.H. Lai, Y.A. Wang, Z.P. Aguilar, H. Wei, Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25, 45 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports from National Natural Science Foundation of China (No. 31201036), Excellent Young Scientist Training Fundation of Guangdong Province in 2014 (No. 4CX14068G) and Science & Technology Fund of Department of Education of Guangdong Province (2012LYM_0069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wu, D. & Chen, J. Investigation of pseudo boehmite nanoparticles as an antibacterial agent. Appl. Phys. A 119, 1515–1522 (2015). https://doi.org/10.1007/s00339-015-9129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9129-9

Keywords

Navigation