Skip to main content
Log in

Design of versatile printed organic resistor based on resistivity (ρ) control

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate the design and fabrication of a printed organic resistor based on resistivity (ρ) control method. Two types of resistor are reported by utilizing three types of material poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), poly(methyl methacrylate), and silver (Ag) nano-particles. Materials are blended for the required value of resistivity (ρ), to overcome the size and resistance value constraints of the printed resistors. The design function ρ(x) is also proposed to estimate the required resistivity value, and this function is obtained from the measured resistivity and mixing ratio of materials. The proposed resistivity design function is verified by comparing measured and theoretical estimated values of the resistivity. The resistors are fabricated on polyethylene terephthalate substrate through electro-hydrodynamic technique. The proposed two types of organic resistors are electrically and mechanically characterized by using various methods of their current–voltage (IV) relation analysis, endurance time, bendability, heating temperature analysis, and frequency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Berggren, D. Nilsson, N. Robinson, Nat. Mater. 6, 3 (2007)

    Article  ADS  Google Scholar 

  2. M. Chason, D. Gamota, P. Brazis Jr, K. Kalyanasundaram, J. Zhang, K. Lian, R. Croswell, MRS Bull. 3, 471 (2006)

    Article  Google Scholar 

  3. K. Lian, J. Zhang, R. Li, H. Wang, W. Hsi, ECS Trans. 6(35), 3074 (2008)

    Google Scholar 

  4. T. Sekitani, T. Someya, MRS Bull. 37, 236 (2012)

    Article  Google Scholar 

  5. S.K. Volkman, Y. Pei, D. Redinger, S. Yin, V. Subramanian, MRS Proc. 814, 17–18 (2004)

    Article  Google Scholar 

  6. Hu Liangbing, Wu Hui, Cu Yi, Appl. Phys. Lett. 96, 183502 (2010)

    Article  Google Scholar 

  7. A.B. Menicanin, L.D. Zivanov, M.S. Damnjanovic, A.M. Maric, IEEE Trans. Electron Devices 60, 2 (2013)

    Article  Google Scholar 

  8. Sungjune Jung, Antony Sou, Enrico Gili, Henning Sirringhaus, Org. Electron. 14, 699 (2013)

    Article  Google Scholar 

  9. Adam C. Siegel, Scott T. Phillips, Michael D. Dickey, Lu Nanshu, Zhigang Suo, George M. Whitesides, Adv. Funct. Mater. 20, 28 (2010)

    Article  Google Scholar 

  10. J. Chen, C. Li, G. Shi, J. Phys. Chem. Lett. 8, 4 (2013)

    Google Scholar 

  11. J. Saghaei, A. Fallahzadeh, M.H. Yousefi, Org. Electron. 19, 70 (2015)

    Article  Google Scholar 

  12. W. Zhang, X. Bi, X. Zhao, Z. Zhao, J. Zhu, S. Dai, L. Yalin, S. Yang, Org. Electron. 15, 3445 (2014)

    Article  Google Scholar 

  13. A. Benor, S. Takizawa, C. Pérez-Bolívar, P. Anzenbacher Jr, Org. Electron. 11, 938 (2010)

    Article  Google Scholar 

  14. Y. Xia, J. Ouyang, J. Mater. Chem. 21, 4927 (2011)

    Article  Google Scholar 

  15. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.G. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Appl. Phys. 98, 1 (2005)

    Google Scholar 

  16. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20, 215201 (2009)

    Article  ADS  Google Scholar 

  17. M.N. Awais, K.H. Choi, Jpn. J. Appl. Phys. 52, 5 (2013)

    Article  Google Scholar 

  18. I. Hayati, A. Bailey, T.F. Tadros, Nature 319, 41 (1986)

    Article  ADS  Google Scholar 

  19. M. Nardesa, M. Kemerinka, M.M. de Kokb, E. Vinkenc, K. Maturovaa, R.J. Janssena, Org. Electron. 9, 7–27 (2008)

    Google Scholar 

  20. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, New York, 1992)

    MATH  Google Scholar 

  21. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer, New York, 1980)

    Book  Google Scholar 

  22. P. Pacher, A. Lex, S. Eder, G. Trimmel, C. Slugovc, E.J.W. List, E. Zojer, Sens. Actuators B Chem. 145, 181 (2010)

    Article  Google Scholar 

  23. Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Org. Electron. 15, 2971 (2014)

    Article  Google Scholar 

  24. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S.A. Choulis, Org. Electron. 10, 61 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of South Korea (NRF) funded by the Ministry of Education (NRF- 2013R1A1A4A01011554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Bae, J. & Lee, C.H. Design of versatile printed organic resistor based on resistivity (ρ) control. Appl. Phys. A 119, 1499–1506 (2015). https://doi.org/10.1007/s00339-015-9127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9127-y

Keywords

Navigation