Skip to main content
Log in

Synthesis of nanostructured MnO2, SnO2, and Co3O4: graphene composites with enhanced microwave absorption properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, metal oxide (MnO2, SnO2 and Co3O4)–graphene composite materials were successfully prepared via different synthesis methods. Uniform metal oxide nanoparticles were well dispersed on graphene sheets, and transmission electron microscopy characterizations showed that the average sizes of MnO2, SnO2, and Co3O4 particles were about 60, 5, and 10 nm, respectively. Reflection losses of graphene composites and pure graphene were systematically evaluated between 2 and 18 GHz, which revealed that all composites exhibited enhanced microwave absorption properties compared to pure graphene. The minimum reflection losses of MnO2-graphene, SnO2–graphene, and Co3O4–graphene composites with a thickness of 2.0 mm were −20.9, −15.28, and −7.3 dB at the frequency of 14.8, 15.94, and 9.6 GHz, respectively, whereas −4.5 dB for pure graphene. The enhanced absorption ability probably originated from the combined advantage of metal oxide particles and graphene, which proved beneficial to improve the impedance matching of permittivity and permeability. Besides, the intrinsic characteristics of MnO2, SnO2, and Co3O4 nanoparticles, the interface between nanostructured metal oxides and graphene sheets, and the multi-dielectric relaxation processes are all influence factors to improve the properties of microwave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  2. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)

    Article  Google Scholar 

  3. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Chemical functionalization of graphene and its applications. Prog. Mater Sci. 57, 1061–1105 (2012)

    Article  Google Scholar 

  4. Q. Tang, Z. Zhou, Z. Chen, Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5, 4541–4583 (2013)

    Article  ADS  Google Scholar 

  5. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 18762–18902 (2011)

    Google Scholar 

  6. D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482–1513 (2011)

    Article  Google Scholar 

  7. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future progress in materials. Science 56, 1178–1271 (2011)

    Google Scholar 

  8. T. Kim, H. Kim, S.W. Kwon, Y. Kim, W.K. Park, D.H. Yoon, A.R. Jang, H.S. Shin, K.S. Suh, W.S. Yang, Large-scale graphene micropatterns via self-assembly-mediated process for flexible device application. Nano Lett. 12, 743–748 (2012)

    Article  ADS  Google Scholar 

  9. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide–MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)

    Article  Google Scholar 

  10. Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4, 1113–1132 (2011)

    Article  Google Scholar 

  11. Z. Chen, D. Yu, W. Xiong, P. Liu, Y. Liu, L. Dai, Graphene-based nanowire supercapacitors. Langmuir 30, 3567–3571 (2014)

    Article  Google Scholar 

  12. P.V. Kamat, Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2, 242–251 (2011)

    Article  Google Scholar 

  13. Y.H. Hu, H. Wang, B. Hu, Thinnest two-dimensional nanomaterial—graphene for solar energy. ChemSusChem. 3, 782–796 (2010)

    Article  Google Scholar 

  14. P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. The Journal of Physical Chemistry C 111, 2834–2860 (2007)

    Article  Google Scholar 

  15. J. Du, S. Pei, L. Ma, H.-M. Cheng, 25th Anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater. 26, 1958–1991 (2014)

    Article  Google Scholar 

  16. I.V. Lightcap, P.V. Kamat, Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res. 46, 2235–2243 (2012)

    Article  Google Scholar 

  17. S. Chandrasekaran, S. Ramanathan, T. Basak, Microwave material processing—a review. AIChE J. 58, 330–363 (2012)

    Article  Google Scholar 

  18. M. Ding, Y. Tang, A. Star, Understanding interfaces in metal-graphitic hybrid nanostructures. J. Phys. Chem. Lett. 4, 147–160 (2012)

    Article  Google Scholar 

  19. G.-S. Wang, Y. Wu, Y.-Z. Wei, X.-J. Zhang, Y. Li, L.-D. Li, B. Wen, P.-G. Yin, L. Guo, M.-S. Cao, Fabrication of reduced graphene oxide (RGO)/Co3O4 nanohybrid particles and a RGO/Co3O4/Poly(vinylidene fluoride) composite with enhanced wave-absorption properties. ChemPlusChem 79, 375–381 (2014)

    Article  Google Scholar 

  20. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramanian, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5, 2411–2420 (2013)

    Article  ADS  Google Scholar 

  21. Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, P. Gao, P. Yang, Q. Ouyang, Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5, 12296–12303 (2013)

    Article  ADS  Google Scholar 

  22. T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, X. Yang, Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 22, 15190–15197 (2012)

    Article  Google Scholar 

  23. R. Han, X.-H. Han, L. Qiao, T. Wang, F.-S. Li, Enhanced microwave absorption of ZnO-coated planar anisotropy carbonyl-iron particles in quasimicrowave frequency band. Mater. Chem. Phys. 128, 317–322 (2011)

    Article  Google Scholar 

  24. C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, P. Xu, Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloy. Compd. 506, 93–97 (2010)

    Article  Google Scholar 

  25. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011)

    Article  ADS  Google Scholar 

  26. M. Fu, Q. Jiao, Y. Zhao, Preparation of NiFe2O4 nanorod—graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. J. Mater. Chem. A 1, 5577–5586 (2013)

    Article  Google Scholar 

  27. M. Fu, Q. Jiao, Y. Zhao, H. Li, Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials. J. Mater. Chem. A 2, 735–744 (2014)

    Article  Google Scholar 

  28. C. Hu, Z. Mou, G. Lu, N. Chen, Z. Dong, M. Hu, L. Qu, 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Phys. Chem. Chem. Phys. 15, 13038–13043 (2013)

    Article  Google Scholar 

  29. Q.Q. Zhu, J.H. Yu, X.X. Wang, L.L. Xu, L. Cao, L.F. Dong, Synthesis and photoelectrical properties of graphene-CuxO nanostructures. Adv. Mater. Res. 704, 229–234 (2013)

    Article  Google Scholar 

  30. X.X. Wang, J.H. Yu, H.Z. Dong, F.J. Jiang, Q.Q. Zhu, L.L. Xu, L.F. Dong, Comparative study on electrical properties of three different types of graphene-based thin films. ECS Trans. 53, 1–9 (2013)

    Google Scholar 

  31. L. Yu, Y.X. Yan, Q. Liu, J. Wang, B. Yang, B. Wang, X.Y. Jing, L.H. Liu, Exfoliation at room temperature for improving electrochemical performance for supercapacitors of layered MnO2. J. Electrochem. Soc. 161, E1–E5 (2014)

    Article  Google Scholar 

  32. X. Wang, Y. Li, Rational synthetic strategy. From layered structure to MnO2 nanotubes. Chem. Lett. 33, 48–49 (2004)

    Article  Google Scholar 

  33. S. Komaba, N. Kumagai, S. Chiba, Synthesis of layered MnO2 by calcination of KMnO4 for rechargeable lithium battery cathode. Electrochim. Acta 46, 31–37 (2000)

    Article  Google Scholar 

  34. A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, S.A.A. Hamid, Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92, 876–882 (2002)

    Article  ADS  Google Scholar 

  35. Y. Naito, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech 19, 65–72 (1971)

    Article  ADS  Google Scholar 

  36. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 27, 5462–5464 (1991)

    Article  ADS  Google Scholar 

  37. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)

    Article  ADS  Google Scholar 

  38. D. Chen, H. Quan, G.-S. Wang, L. Guo, Hollow α-MnS spheres and their hybrids with reduced graphene oxide: synthesis, microwave absorption, and lithium storage properties. ChemPlusChem 78, 843–851 (2013)

    Article  Google Scholar 

  39. J. Frenkel, J. Dorfman, Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126, 274–275 (1930)

    Article  ADS  MATH  Google Scholar 

  40. X.-L. Shi, M.-S. Cao, J. Yuan, X.-Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009)

    Article  ADS  Google Scholar 

  41. L. Zhen, J. Jiang, W. Shao, C. Xu, Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite. Appl. Phys. Lett. 90, 142907 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (51172113 & 51373086), the International Science & Technology Cooperation Program of China (2014DFA60150), the Shandong Natural Science Foundation (JQ201118), and the Taishan Overseas Scholar program from the Shandong Province Government, PR China. We thank Qianqian Zhu and Dong Chen for their help in some experiments and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, J., Dong, H. et al. Synthesis of nanostructured MnO2, SnO2, and Co3O4: graphene composites with enhanced microwave absorption properties. Appl. Phys. A 119, 1483–1490 (2015). https://doi.org/10.1007/s00339-015-9124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9124-1

Keywords

Navigation