Skip to main content
Log in

Effects of complexing ligand in sol–gel process on the photocatalytic activity of TiO2–C hybrid aerogels

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of the acetylacetonate content, a complexing ligand during the one-step sol–gel preparation of TiO2–C hybrid aerogels on their photocatalytic performance for degradation of methylene blue (MB), was investigated. N2 adsorption, XRD, SEM, TEM, Raman and UV–vis spectroscopy were used to characterize the physics-chemical properties of the TiO2–C hybrid aerogels. Results show that complexing ligand can inhibit growth of TiO2 nanoparticles in sol–gel process. Thereby, the porous properties, adsorption equilibrium and kinetics for MB, crystalline size and band gap of the TiO2 in the hybrid aerogels are changed accordingly. The photocatalytic activity of the hybrid aerogels is dominantly determined by adsorption equilibrium and kinetics. Band-gap narrowing, reduced e–h+ recombination rate and light availability are also responsible for the high photocatalytic activity.

Graphical abstract

A comparison of photocatalytic activity of best sample with P25 for methylene blue degradation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ρ :

Apparent density

FWHM:

Full width at half maximum

S BET :

Surface area by a Brunauer–Emmett–Teller (BET) method

S ext :

External surface area by a t-plot method

D p :

The mean pore size evaluated by BJH (Barret–Joyner–Hallender) pore size distribution curves from desorption branched of the N2 adsorption isotherms

V mes :

Pore volume of mesopores between 2 and 50 nm

V mic :

Pore volume of micropores <2 nm

Φ :

Porosity

V total :

Total pore volume including micropores, mesopores and macropores

t :

Time

q t :

The amount of MB adsorbed at t

q 2 :

The amount of MB adsorbed at equilibrium

k 2 :

The pseudo-second-order rate constant

\( x_{{{\text{TiO}}_{2} }} \) :

Weight percentage of TiO2

C 0 :

The initial concentration of methylene blue

C :

The concentration of methylene blue at time of t

References

  1. J. Matos, J. Laine, J.M. Herrmann, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B-Environ. 18, 281–291 (1998)

    Article  Google Scholar 

  2. C. Minero, F. Catozzo, E. Pelizzetti, Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions. Langmuir 8, 481–486 (1992)

    Article  Google Scholar 

  3. T. Torimoto, S. Ito, S. Kuwabata, Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Envrion. Sci. Technol. 30, 1275–1281 (1996)

    Article  Google Scholar 

  4. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, Carbon coating of anatase-type TiO2 and photoactivity. J. Mater. Chem. 12, 1391–1396 (2002)

    Article  Google Scholar 

  5. M.L. Chen, C.S. Lim, W.C. Oh, Preparation with different mixing ratios of anatase to activated carbon and their photocatalytic performance. J. Ceram. Process. Res. 8, 119–124 (2007)

    Google Scholar 

  6. R.S. Yuan, R.B. Guan, W.Z. Shen, J.T. Zheng, Photocatalytic degradation of MB by a combination of TiO2 and activated carbon fibers. J. Colloid Interf. Sci. 282, 87–91 (2005)

    Article  Google Scholar 

  7. Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4, 7303–7314 (2010)

    Article  Google Scholar 

  8. X. Shao, W.C. Lu, R. Zhang, F. Pan, Enhanced photocatalytic activity of TiO2–C hybrid aerogels for methylene blue degradation. Scientific Reports. 3, 3018 (2013)

    ADS  Google Scholar 

  9. H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772–773 (2003)

    Article  Google Scholar 

  10. S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908–4911 (2003)

    Article  Google Scholar 

  11. M. Inagaki, F. Kojin, B. Tryba, M. Toyoda, Carbon-coated anatase: the role of the carbon layer for photocatalytic performance. Carbon 43, 1652–1659 (2005)

    Article  Google Scholar 

  12. M. Toyoda, T. Yano, T. Tomoki, Y. Amao, M. Inagaki, Effects of carbon coating on Ti n O2n−1 for decomposition of iminoactadine triacetate in aqueous solution under visible light. J. Adv. Oxid. Technol. 9, 49–52 (2006)

    Google Scholar 

  13. B. Tryba, A.W. Morawski, T. Tsumura, M. Toyoda, M. Inagaki, Hybridization of adsorptivity with photocatalytic activity–carbon-coated anatase. J. Photoch. Photobio. A. 167, 127–135 (2004)

    Article  Google Scholar 

  14. G.L. Puma, A. Bono, D. Krishnaiah, J.G. Collin, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J. Hazard. Mater. 157, 209–219 (2008)

    Article  Google Scholar 

  15. H. Uchida, S. Itoh, H. Yoneyama, Photocatalytic decomposition of propyzamide using TiO2 supported on activated carbon. Chem. Lett. 22, 1995–1998 (1993)

    Article  Google Scholar 

  16. A.H. El-Sheikh et al., Deposition of anatase on the surface of activated carbon. Surf. Coat. Technol. 187, 284–292 (2004)

    Article  Google Scholar 

  17. J. Arana et al., TiO2 activation by using activated carbon as a support: surface characterization and decantability study. Appl. Catal. B-Environ. 44, 161–172 (2003)

    Article  Google Scholar 

  18. B. Tryba, T. Tsumura, M. Janus, A.W. Morawski, M. Inagaki, Carbon-coated anatase: adsorption and decomposition of phenol in water. Appl. Catal. B-Environ. 50, 177–183 (2004)

    Article  Google Scholar 

  19. K.F. Zhou, Y.H. Zhu, X.L. Yang, X. Jiang, C.Z. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35, 353–359 (2011)

    Article  Google Scholar 

  20. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon canotube–TiO2 composites. Adv. Mater. 21, 2233–2239 (2009)

    Article  Google Scholar 

  21. B. Gao, G.Z. Chen, G.L. Puma, Carbon nanotubes–titanium dioxide (CNTs–TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B-Environ. 89, 503–509 (2009)

    Article  Google Scholar 

  22. A. Leaustic, F. Babonneau, J. Livage, Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPri, OEt) modified by acetylacetone. 1. Study of the alkoxide modification. Chem. Mat. 1, 240–247 (1989)

    Article  Google Scholar 

  23. A. Leaustic, F. Babonneau, J. Livage, Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPri, OEt) modified by acetylacetone. 2. From the modified precursor to the colloids. Chem. Mat. 1, 248–252 (1989)

    Article  Google Scholar 

  24. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115–124 (1998)

    Article  Google Scholar 

  25. N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat. Nanotech. 3, 106–111 (2008)

    Article  ADS  Google Scholar 

  26. A. Kataee, G.A. Mansoori, Nanostructured Titanium Dioxide Materials: Properties, Preparation And Applications (World Scientific Publishing Co Pte Ltd., Singapore, 2012)

    Google Scholar 

  27. S. Sajjad, Synthesis, characterization and applications of nanomaterials in the field of photocatalysis. Doctoral Thesis/Dissertation, 2011

Download references

Acknowledgments

This work was supported by the Capacity Building Program of Shanghai Local Universities (No. 12160503600), the First-Class Discipline Construction Fund of Shanghai Municipal Education Commission (No. J201212), Nature Science Foundation of China (U1332107) and Key Discipline Construction Fund of Composite Materials of Shanghai Institute of Technology (No. 10210Q140001).

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Zhu, L., Pan, F. et al. Effects of complexing ligand in sol–gel process on the photocatalytic activity of TiO2–C hybrid aerogels. Appl. Phys. A 119, 1459–1467 (2015). https://doi.org/10.1007/s00339-015-9120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9120-5

Keywords

Navigation