Skip to main content
Log in

Graphitization wave in diamond bulk induced by ultrashort laser pulses

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multi-pulse laser irradiation of diamond bulk after the optical breakdown causes extension of continuous graphitized region toward the laser beam that can be described as propagation of a “graphitization wave.” Velocity of the graphitization wave in single-crystal diamond is measured experimentally as a function of local laser fluence for a few numerical apertures (NA = 0.36–0.09), pulsewidths (140 fs–5 ps), and beam orientations (along [110] or [100] diamond axes). The experimental results are used to develop the model of the crack-assisted thermal graphitization of diamond at the boundary of the laser-modified region. Velocity of the graphitization wave is determined in general case by diffusion of heat from the light-absorbing modified region. The revealed rise in the graphitization wave velocity for the [110] beam orientation can be explained by the local electric field enhancement near the crack tip, which facilitates diamond ionization and plasma-assisted energy absorption. The proposed model predicts a specific internal structure of the laser-modified region: the network of graphitic inclusions with diamond-filled gaps between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Davies, T. Evans, Proc. R. Soc. Lond. A 328, 413 (1972)

    ADS  Google Scholar 

  2. A.A. Gippius, R.A. Khmelnitskiy, V.A. Dravin, S.D. Tkachenko, Diam. Relat. Mater. 8, 1631 (1999)

    ADS  Google Scholar 

  3. T.I. Galkina, A.Y. Klokov, A.I. Sharkov, R.A. Khmelnitskiy, A.A. Gippius, V.A. Dravin, V.G. Ral’chenko, A.V. Savel’ev, Phys. Solid State 49, 654 (2007)

    ADS  Google Scholar 

  4. P. Olivero, G. Amato, F. Bellotti, O. Budnyk, E. Colombo, M. Jakšić, C. Manfredotti, Ž. Pastuović, F. Picollo, N. Skukan, M. Vannoni, E. Vittone, Diam. Relat. Mater. 18, 870 (2009)

    ADS  Google Scholar 

  5. F. Picollo, D.G. Monticone, P. Olivero, B.A. Fairchild, S. Rubanov, S. Prawer, E. Vittone, New J. Phys. 14, 053011 (2012)

    ADS  Google Scholar 

  6. M. Rothschild, C. Arnone, D.J. Ehrich, J. Vac. Sci. Technol., B 4, 310 (1986)

    Google Scholar 

  7. V.P. Ageev, L.L. Bouilov, V.I. Konov, A.V. Kuzmichov, S.M. Pimenov, A.M. Prokhorov, V.G. Ralchenko, B.V. Spitsyn, N.I. Chapliev, Sov. Phys. Dokl. 33, 840 (1988)

    ADS  Google Scholar 

  8. M.W. Geis, M. Rothschild, R.R. Kunz, R.L. Aggarwal, K.F. Wall, C.D. Parker, K.A. McIntosh, N.N. Efremow, J.J. Zayhowski, D.J. Ehrlich, J.E. Butler, Appl. Phys. Lett. 55, 2295 (1989)

    ADS  Google Scholar 

  9. T.V. Kononenko, M. Meier, M.S. Komlenok, S.M. Pimenov, V. Romano, V.P. Pashinin, V.I. Konov, Appl. Phys. A 90, 645 (2008)

    ADS  Google Scholar 

  10. M. Shimizu, Y. Shimotsuma, M. Sakakura, T. Yuasa, H. Homma, Y. Minowa, K. Tanaka, K. Miura, K. Hirao, Opt. Express 17, 46 (2009)

    ADS  Google Scholar 

  11. T.V. Kononenko, M.S. Komlenok, V.P. Pashinin, S.M. Pimenov, V.I. Konov, M. Neff, V. Romano, W. Lüthy, Diam. Relat. Mater. 18, 196 (2009)

    ADS  Google Scholar 

  12. T.V. Kononenko, V.I. Konov, S.M. Pimenov, N.M. Rossukanyi, A.I. Rukovishnikov, V. Romano, Diam. Relat. Mater. 20, 264 (2011)

    ADS  Google Scholar 

  13. B. Sun, P.S. Salter, M.J. Booth, Appl. Phys. Lett. 105, 231105 (2014)

    ADS  Google Scholar 

  14. Y.G. Chen, M. Hasegawa, H. Okushi, S. Koizumi, H. Yoshida, T. Sakai, N. Kobayashi, Diam. Relat. Mater. 11, 451 (2002)

    ADS  Google Scholar 

  15. R. Kalish, S. Prawer, Nucl. Instrum. Methods B 106, 492 (1995)

    ADS  Google Scholar 

  16. S. Prawer, A.D. Devir, L.S. Balfour, R. Kalish, Appl. Opt. 34, 636 (1995)

    ADS  Google Scholar 

  17. A.V. Karabutov, V.G. Ralchenko, I.I. Vlasov, R.A. Khmelnitsky, M.A. Negodaev, V.P. Varnin, I.G. Teremetskaya, Diam. Relat. Mater. 10, 2178 (2001)

    ADS  Google Scholar 

  18. P.J. Sellin, A. Galbiati, Appl. Phys. Lett. 87, 093502 (2005)

    ADS  Google Scholar 

  19. P. Olivero, J. Forneris, M. Jakšić, Ž. Pastuović, F. Picollo, N. Skukan, E. Vittone, Nucl. Instrum. Methods B 269, 2340 (2011)

    ADS  Google Scholar 

  20. B. Caylar, M. Pomorski, P. Bergonzo, Appl. Phys. Lett. 103, 043504 (2013)

    ADS  Google Scholar 

  21. S. Lagomarsino, M. Bellini, C. Corsi, F. Gorelli, G. Parrini, M. Santoro, S. Sciortino, Appl. Phys. Lett. 103, 233507 (2013)

    ADS  Google Scholar 

  22. T. Kononenko, V. Ralchenko, A. Bolshakov, V. Konov, P. Allegrini, M. Pacilli, G. Conte, E. Spiriti, Appl. Phys. A 114, 297 (2014)

    ADS  Google Scholar 

  23. S. Lagomarsino, M. Bellini, C. Corsi, S. Fanetti, F. Gorelli, I. Liontos, G. Parrini, M. Santoro, S. Sciortino, Diam. Relat. Mater. 43, 23 (2014)

    ADS  Google Scholar 

  24. V.V. Kononenko, T.V. Kononenko, S.M. Pimenov, M.N. Sinyavskii, V.I. Konov, F. Dausinger, Quantum Electron. 35, 252 (2005)

    ADS  Google Scholar 

  25. F.V. Bunkin, V.I. Konov, A.M. Prokhorov, V.B. Fedorov, JETP Lett. 9, 371 (1969)

    ADS  Google Scholar 

  26. S.M. Pimenov, I.I. Vlasov, A.A. Khomich, B. Neuenschwander, M. Muralt, V. Romano, Appl. Phys. A 105, 673 (2011)

    ADS  Google Scholar 

  27. S.M. Pimenov, B. Neuenschwander, B. Jäggi, V. Romano, Appl. Phys. A 114, 1309 (2014)

    ADS  Google Scholar 

  28. G. Fibich, A.L. Gaeta, Opt. Lett. 25, 335 (2000)

    ADS  Google Scholar 

  29. R.P. Mildren, in Optical Engineering of Diamond, ed. by R.P. Mildren, J. Rabeau (Wiley, Hoboken, 2013), pp. 1–34

    Chapter  Google Scholar 

  30. T.V. Kononenko, P.N. Dyachenko, V.I. Konov, Opt. Lett. 39, 6962 (2014)

    ADS  Google Scholar 

  31. R.H. Telling, C.J. Pickard, M.C. Payne, J.E. Field, Phys. Rev. Lett. 84, 5160 (2000)

    ADS  Google Scholar 

  32. H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Phys. Rev. B 60, R3701 (1999)

    ADS  Google Scholar 

  33. N. Medvedev, H.O. Jeschke, B. Ziaja, Phys. Rev. B 88, 224304 (2013)

    ADS  Google Scholar 

  34. V.R. Howes, Proc. Phys. Soc. 80, 648 (1962)

    ADS  Google Scholar 

  35. T.V. Kononenko, A.A. Khomich, V.I. Konov, Diam. Relat. Mater. 37, 50 (2013)

    ADS  Google Scholar 

  36. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Appl. Phys. A 79, 767 (2004)

    ADS  Google Scholar 

  37. V.I. Nepsha, in Handbook of Industrial Diamonds and Diamond Films, ed. by M.A. Prelas, G. Popovici, L.K. Bigelow (Marcel Dekker, New York, 1998), p. 151

    Google Scholar 

  38. J.W. Vandersande, C.B. Vining, A. Zoltan, Proceedings of the 2nd International Symposium on Diamond Materials (The Electrochemical Society, Pennington, 1992), p. 443

    Google Scholar 

  39. G.B. Spence, Air Force Materials Laboratory Report, WADD TR 61–72. XL1 (1963)

  40. M.L. Minges, Int. J. Heat Mass Transf. 17, 1365 (1974)

    Google Scholar 

  41. M.W. Williams, E.T. Arakawa, J. Appl. Phys. 43, 3460 (1972)

    ADS  Google Scholar 

  42. N. Bloembergen, Appl. Opt. 12, 661 (1973)

    ADS  Google Scholar 

  43. Y.V. Butenko, V.L. Kuznetsov, A.L. Chuvilin, V.N. Kolomiichuk, S.V. Stankus, R.A. Khairulin, B. Segall, J. Appl. Phys. 88, 4380 (2000)

    ADS  Google Scholar 

  44. F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.U. Mao, A.F. Goncharov, Carbon 34, 141 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The experimental part of the work was supported by the Russian Foundation of Basic Research (Grant 13-02-12068); the modeling was done in the frame of Russian Scientific Foundation Grant 14-22-00243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kononenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononenko, T.V., Zavedeev, E.V., Kononenko, V.V. et al. Graphitization wave in diamond bulk induced by ultrashort laser pulses. Appl. Phys. A 119, 405–414 (2015). https://doi.org/10.1007/s00339-015-9109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9109-0

Keywords

Navigation