Skip to main content
Log in

Relation between the microstructure and the electromagnetic properties of BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The microstructure–property relation in ferroelectric/ferromagnetic composite is investigated in detail, exemplified by typical sol–gel-derived 0.3BTO/0.7NZFO ceramic composite. The effect of microstructural factors including intergrain connectivity, grain size and interfaces on the dielectric and magnetic properties of the composite prepared by conventional ceramic method and three-step sintering method is discussed both experimentally and theoretically. It reveals that the dielectric behavior of the composite is controlled by a hybrid dielectric process that combines the contribution of Debye-like dipoles and Maxwell–Wagner (M–W or interfacial) polarization. Enhanced dielectric, magnetic and conductive behaviors appear in the composite with better intergrain connectivity and larger grain size derived by sol–gel route and three-step sintering method. The effective permittivity contributed by Debye-like dipoles exhibits a value of ~130,000 in three-step sintered composite, which is almost the same as that in conventionally sintered one, but that contributed by M–W response is much smaller in the former. Compared with conventionally prepared samples, the relaxation time (τ) is 3.476 × 10−6 s, about one order of magnitude smaller, and the dc electrical conductivity is 3.890 × 10−3 S/m, one order of magnitude higher in three-step sintered composite. The minimum dielectric loss reveals almost the same (~0.2) for all samples, but shows distinguishable difference in low-frequency region. Meanwhile, an initial permeability of 84, twice as large as that of conventionally prepared composite and 56 % the value of single-phased NZFO ferrite (~150), and a saturation magnetization of 63.5 emu/g, 32 % higher than that of conventional one and approximately 84 % the value of single-phased NZFO ferrite (~76 emu/g), appear simultaneously in three-step sintered composite with larger grain size and better intergrain connectivity. It is clear that the discovery is helpful for establishing a more explicit view on the physics of multi-functional composite materials, while the composite with optimized microstructure is beneficial to be used as a high-performance material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Jung, J.Y. Son, Carbon 50, 3854 (2012)

    Article  Google Scholar 

  2. Y. Han, L. Li, Z. Wang, D. Guo, M. Zhang, J. Am. Ceram. Soc. 96, 358 (2013)

    Google Scholar 

  3. J.Q. Huang, P.Y. Du, L.X. Hong, Y.L. Dong, M.C. Hong, Adv. Mater. 19, 437 (2007)

    Article  Google Scholar 

  4. X.T. Li, P.Y. Du, H. Ye, C.L. Mak, K.H. Wong, Appl. Phys. A 92, 397 (2008)

    Article  ADS  Google Scholar 

  5. H. Wu, G. Chai, B. Xu, J. Li, Z. Zhang, Appl. Phys. A 113, 155 (2013)

    Article  ADS  Google Scholar 

  6. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, Adv. Funct. Mater. 14, 920 (2004)

    Article  Google Scholar 

  7. M.I. Bichurin, V.M. Petrov, YuV Kiliba, G. Srinivasan, Phys. Rev. B 66, 134404 (2002)

    Article  ADS  Google Scholar 

  8. J. Shen, Y. Bai, J. Zhou, L. Li, J. Am. Ceram. Soc. 88, 3440 (2005)

    Article  Google Scholar 

  9. H. Wu, B. Xu, A. Liu, G. Chai, J. Phys. D Appl. Phys. 45, 455306 (2012)

    Article  ADS  Google Scholar 

  10. H. Zheng, L. Li, Z. Xu, W. Weng, G. Han, N. Ma, P. Du, J. Phys. D Appl. Phys. 46, 185002 (2013)

    Article  ADS  Google Scholar 

  11. Y. Zhi, A. Chen, J. Appl. Phys. 91, 794 (2002)

    Article  Google Scholar 

  12. P.S.S.R. Krishnan, Q.M. Ramasse, W.I. Liang, Y.H. Chu, V. Nagarajan, P. Munroe, J. Appl. Phys. 112, 104102 (2012)

    Article  ADS  Google Scholar 

  13. A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marre, A.S. Siri, P. Nanni, J. Eur. Ceram. Soc. 26, 3031 (2006)

    Article  Google Scholar 

  14. C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  15. Y. Shen, Y.H. Lin, C.W. Nan, Adv. Funct. Mater. 17, 2405 (2007)

    Article  Google Scholar 

  16. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)

    Article  ADS  Google Scholar 

  17. G.S. Rohrer, M. Affatigato, M. Backhaus, R.K. Bordia, H.M. Chan, S. Curtarolo, A. Demkov, J.N. Eckstein, K.T. Faber, J.E. Garay, Y. Gogotsi, L. Huang, L.E. Jones, S.V. Kalinin, R.J. Lad, C.G. Levi, J. Levy, J.P. Maria, L. Mattos Jr, A. Navrotsky, N. Orlovskaya, C. Pantano, J.F. Stebbins, T.S. Sudarshan, T. Tani, K.S. Weil, J. Am. Ceram. Soc. 95, 3699 (2012)

    Article  Google Scholar 

  18. J.Q. Huang, H. Zheng, Z.H. Chen, Q. Gao, N. Ma, P.Y. Du, J. Mater. Chem. 19, 3909 (2009)

    Google Scholar 

  19. B. Xiao, Y.L. Dong, N. Ma, P.Y. Du, J. Am. Ceram. Soc. 96, 1240 (2013)

    Article  Google Scholar 

  20. B. Xiao, N. Ma, P.Y. Du, J. Mater. Chem. C 1, 6325 (2013)

    Article  Google Scholar 

  21. B. Xiao, W. Zheng, Y.L. Dong, N. Ma, P.Y. Du, J. Phys. Chem. C 118, 5802 (2014)

    Article  Google Scholar 

  22. B. Xiao, W. Zheng, M.K. Zhu, W.J. Zhao, N. Ma, P.Y. Du, J. Mater. Chem. C 2, 7482 (2014)

    Article  Google Scholar 

  23. B. Xiao, J.C. Wang, N. Ma, P.Y. Du, Adv. Multifunct. Mater. Syst. II Ceram. Trans. 245, 23 (2014)

    Article  Google Scholar 

  24. H. Zheng, L. Li, Z. Xu, W. Weng, G. Han, N. Ma, P. Du, J. Appl. Phys. 113, 044101 (2013)

    Article  ADS  Google Scholar 

  25. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  26. H. Zheng, Y.L. Dong, X. Wang, W.J. Weng, G.R. Han, N. Ma, P.Y. Du, Angew. Chem. Int. Ed. 48, 8927 (2009)

    Article  Google Scholar 

  27. X. Ning, P.Y. Ping, W. Zhuo, J. Am. Ceram. Soc. 95, 999 (2012)

    Google Scholar 

  28. Y.J. Li, X.M. Chen, R.Z. Hou, Y.H. Tang, Solid State Commun. 137, 120 (2006)

    Article  ADS  Google Scholar 

  29. G. Catalan, D. O’Neill, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 77, 3078 (2000)

    Article  ADS  Google Scholar 

  30. Z.H. Chen, J.Q. Huang, Q. Chen, C.L. Song, G.R. Han, W.J. Weng, P.Y. Du, Scr. Mater. 57, 921 (2007)

    Article  ADS  Google Scholar 

  31. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  32. K.S. Cole, R.H. Cole, J. Chem. Phys. 10, 98 (1942)

    Article  ADS  Google Scholar 

  33. Y.H. Lin, L. Jiang, R.J. Zhao, C.W. Nan, Phys. Rev. B 72, 014103 (2005)

    Article  ADS  Google Scholar 

  34. H.G. Jeon, Y.H. Huh, S.H. Yun, K.W. Kim, S.S. Lee, J. Lim, K.S. An, B. Park, J. Mater. Chem. C 2, 2622 (2014)

    Article  Google Scholar 

  35. D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990)

    Article  Google Scholar 

  36. T. Nakamura, J. Appl. Phys. 88, 348 (2000)

    Article  ADS  Google Scholar 

  37. T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, K. Hatakeyama, J. Appl. Phys. 78, 3983 (1995)

    Article  ADS  Google Scholar 

  38. G. Xiao, C.L. Chien, Appl. Phys. Lett. 51, 1280 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the Natural Science Foundation of China under Grant Nos. 51272230 and 50872120, and Zhejiang Provincial Natural Science Foundation under Grant No. Z4110040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyi Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Tang, Y., Ma, G. et al. Relation between the microstructure and the electromagnetic properties of BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite. Appl. Phys. A 119, 1291–1300 (2015). https://doi.org/10.1007/s00339-015-9095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9095-2

Keywords

Navigation