Skip to main content
Log in

Reaction mechanisms for CO catalytic oxidation on monodisperse Mo atom-embedded graphene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The geometric stability, electronic structure and catalytic activity of the Mo-embedded graphene (Mo/SV-graphene) are investigated by using the first-principle calculations. Compared with a Mo atom on pristine graphene, the Mo dopant in defective graphene exhibits more positively charged, which helps to weaken the CO adsorption and facilitates the O2 adsorption. Besides, the two mechanisms (Langmuir–Hinshelwood, LH and Eley–Rideal, ER) for the sequential CO oxidation reactions are investigated comparison. Among the reaction processes, the coadsorption of O2 and CO exists at the Mo/SV-graphene surface, the first step (CO + O2 → OOCO) with energy barrier is 0.60 eV and then form a CO2 molecule through the reaction (OOCO → CO2 + Oads) without any energy barrier, and thus the formation of OOCO complex is viewed as rate-controlling step. In the ER reaction, although the CO molecule reacts with the preadsorbed O2 by the low-energy barrier (CO + O2 → CO3, 0.13 eV), the formation of CO3 is more stable than the generating CO2 and Oads (0.84 eV). Hence, the LH mechanism as the starting step is energetically more favorable. The results provide the valuable guidance to fabricate graphene-based catalysis and validate the reactivity of atomic-scale catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331 (2008)

    Article  ADS  Google Scholar 

  2. A. Hornés, A. Hungría, P. Bera, A.L. Cámara, M. Fernández-García, A. Martínez-Arias, L. Barrio, M. Estrella, G. Zhou, J. Fonseca, Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J. Am. Chem. Soc. 132, 34 (2009)

    Article  Google Scholar 

  3. S.N. Rashkeev, A.R. Lupini, S.H. Overbury, S.J. Pennycook, S.T. Pantelides, Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures. Phys. Rev. B 76, 035438 (2007)

    Article  ADS  Google Scholar 

  4. A. Eichler, CO oxidation on transition metal surfaces: reaction rates from first principles. Surf. Sci. 498, 314 (2002)

    Article  ADS  Google Scholar 

  5. N. Lopez, J.K. Nørskov, Catalytic CO oxidation by a gold nanoparticle: a density functional study. J. Am. Chem. Soc. 124, 11262 (2002)

    Article  Google Scholar 

  6. W. Wallace, R. Whetten, Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J. Am. Chem. Soc. 124, 7499 (2002)

    Article  Google Scholar 

  7. U. Heiz, A. Sanchez, S. Abbet, W.D. Schneider, Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214 (1999)

    Article  Google Scholar 

  8. K. Bleakley, P. Hu, A Density Functional Theory Study of the Interaction between CO and O on a Pt Surface: CO/Pt (111), O/Pt (111), and CO/O/Pt (111). J. Am. Chem. Soc. 121, 7644 (1999)

    Article  Google Scholar 

  9. S. Li, Z. Lu, Z. Yang, X. Chu, The sensing mechanism of Pt-doped SnO2 surface toward CO: a first-principle study. Sens. Actuator B Chem. 202, 83 (2014)

    Article  Google Scholar 

  10. X.Q. Gong, Z.P. Liu, R. Raval, P. Hu, A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. J. Am. Chem. Soc. 126, 8 (2004)

    Article  Google Scholar 

  11. A. Zhang, J. Zhu, W. Duan, Oxidation of carbon monoxide on Rh (111): a density functional theory study. J. Chem. Phys. 124, 234703 (2006)

    Article  ADS  Google Scholar 

  12. R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V.V. Viswanathan, S. Park, I.A. Aksay, Y. Lin, Stabilization of electrocatalytic metal nanoparticles at metal–metal oxide–graphene triple junction points. J. Am. Chem. Soc. 133, 2541 (2011)

    Article  Google Scholar 

  13. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nanoletters 9, 2255 (2009)

    Article  ADS  Google Scholar 

  14. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  15. K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  16. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  17. J. Zhang, S. Tang, L. Liao, W. Yu, J. Li, F. Seland, G.M. Haarberg, Improved catalytic activity of mixed platinum catalysts supported on various carbon nanomaterials. J. Power Sources 267, 706 (2014)

    Article  Google Scholar 

  18. E. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 196, 110 (2011)

    Article  Google Scholar 

  19. G. Kim, S.H. Jhi, Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano 5, 805 (2011)

    Article  ADS  Google Scholar 

  20. Y. Lu, M. Zhou, C. Zhang, Y. Feng, Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113, 20156 (2009)

    Article  Google Scholar 

  21. E.H. Song, Z. Wen, Q. Jiang, CO catalytic oxidation on copper-embedded graphene. J. Phys. Chem. C 115, 3678 (2011)

    Article  Google Scholar 

  22. Y.N. Tang, Z.X. Yang, X.Q. Dai, A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys. Chem. Chem. Phys. 14, 16566 (2012)

    Article  Google Scholar 

  23. T.T. Jia, C.H. Lu, Y.F. Zhang, W.K. Chen, A comparative study of CO catalytic oxidation on Pd-anchored graphene oxide and Pd-embedded vacancy graphene. J. Nanopart. Res. 16, 1 (2014)

    Google Scholar 

  24. A. Krasheninnikov, P. Lehtinen, A. Foster, P. Pyykkö, R. Nieminen, Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009)

    Article  ADS  Google Scholar 

  25. Q. Tang, Z. Zhou, Z. Chen, Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5, 4541 (2013)

    Article  ADS  Google Scholar 

  26. Y. Li, Z. Zhou, G. Yu, W. Chen, Z. Chen, CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 114, 6250 (2010)

    Article  Google Scholar 

  27. F. Li, J. Zhao, Z. Chen, Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J. Phys. Chem. C 116, 2507 (2012)

    Article  Google Scholar 

  28. A. Ambrosi, S.Y. Chee, B. Khezri, R.D. Webster, Z. Sofer, M. Pumera, Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51, 500 (2012)

    Article  Google Scholar 

  29. G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  30. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  31. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  32. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. J. Carlsson, M. Scheffler, Structural, electronic, and chemical properties of nanoporous carbon. Phys. Rev. Lett. 96, 46806 (2006)

    Article  ADS  Google Scholar 

  34. G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354 (2006)

    Article  Google Scholar 

  35. G. Henkelman, B. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000)

    Article  ADS  Google Scholar 

  36. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000)

    Article  ADS  Google Scholar 

  37. T. Zhu, J. Li, S. Yip, Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93, 25503 (2004)

    Article  ADS  Google Scholar 

  38. Y.N. Tang, Z.X. Yang, X.Q. Dai, Noble metals induced magnetic properties of graphene. J. Magn. Magn. Mater. 323, 2441 (2011)

    Article  ADS  Google Scholar 

  39. Y.N. Tang, Z.X. Yang, X.Q. Dai, D.W. Ma, Z.M. Fu, Formation, stabilities, and electronic and catalytic performance of platinum catalyst supported on non-metal-doped graphene. J. Phys. Chem. C 117, 5258 (2013)

    Article  Google Scholar 

  40. L.M. Molina, B. Hammer, The activity of the tetrahedral Au20 cluster: charging and impurity effects. J. Catal. 233, 399 (2005)

    Article  Google Scholar 

  41. W. An, Y. Pei, X.C. Zeng, CO oxidation catalyzed by single-walled helical gold nanotube. Nanoletters 8, 195 (2008)

    Article  ADS  Google Scholar 

  42. Y.N. Tang, X.Q. Dai, Z.X. Yang, Z.Y. Liu, L.J. Pan, D.W. Ma, Z.S. Lu, Tuning the catalytic property of non-noble metallic impurities in graphene. Carbon 71, 139 (2014)

    Article  Google Scholar 

  43. Q.G. Jiang, Z.M. Ao, S. Li, Z. Wen, Density functional theory calculations on the CO catalytic oxidation on Al-embedded graphene. RSC Adv. 4, 20290 (2014)

    Article  Google Scholar 

  44. A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter, CO oxidation on Pt (111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650 (1998)

    Article  ADS  Google Scholar 

  45. M. Ackermann, T. Pedersen, B. Hendriksen, O. Robach, S. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer, J.W.M. Frenken, Structure and reactivity of surface oxides on Pt (110) during catalytic CO oxidation. Phys. Rev. Lett. 95, 255505 (2005)

    Article  ADS  Google Scholar 

  46. Y.N. Tang, Z.X. Yang, X.Q. Dai, Z.S. Lu, Y.X. Zhang, Z.M. Fu, Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped graphene. J. Nanosci. Nanotechnol. 14, 7117 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1404109 51401078 and 11247012), and the Science Fund of Educational Department of Henan Province (Grant Nos. 14B140019, 14A140015 and 14A140010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Tang or Xianqi Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Pan, L., Chen, W. et al. Reaction mechanisms for CO catalytic oxidation on monodisperse Mo atom-embedded graphene. Appl. Phys. A 119, 475–485 (2015). https://doi.org/10.1007/s00339-015-9093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9093-4

Keywords

Navigation