Skip to main content
Log in

Fine designing 3-dimensional ZnO nanowalls with TiO2 nanoparticles for DSSC application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, we report a low-cost low-temperature hydrothermal technique for covering 3-dimensional (3-D) electrodeposited ZnO nanowall with thin layer of aggregated TiO2 nanoparticles on FTO substrate for dye-sensitized solar cell application, in a way that morphology and crystal structure of ZnO nanowalls were preserved. Comparing photovoltaic characteristics of devices with and without TiO2-coating layer, it was revealed that the 3-D ZnO/TiO2-nanostructured photoanode resulted in a 35 % cell performance improved mostly because of enhancement of short-circuit current density (J sc) and open-circuit voltage (V oc). The XRD pattern showed that 3-D ZnO nanowalls and TiO2 compose of wurtzite and anatase phases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang, Y. Sun, K. Li, Mater. Lett. 63, 1102 (2009)

    Article  Google Scholar 

  2. J. Chung, J. Lee, S. Lim, Phys. B 405, 2593 (2010)

    Article  ADS  Google Scholar 

  3. J. Qiu, M. Guo, X. Wang, ACS Appl. Mater. Interfaces 3, 2358 (2011)

    Article  Google Scholar 

  4. M. Toivola et al., Int. J. Energy Res. 33, 1145 (2009)

    Article  Google Scholar 

  5. G. Boschloo, T. Edvinsson, A. Hagfeldt, in Nanostructured Materials for Solar Energy Conversion, ed. by S. Tetsuo (Elsevier, Amsterdam, 2006), p. 227

    Chapter  Google Scholar 

  6. V.M. Guerin et al., ACS Appl. Mater. Interfaces 2, 3677 (2010)

    Article  Google Scholar 

  7. Y.-H. Kang et al., Mater. Lett. 63, 679 (2009)

    Article  Google Scholar 

  8. G.Z. Wang et al., Mater. Lett. 59, 3870 (2005)

    Article  Google Scholar 

  9. D.-S. Kang et al., J. Alloys Compd. 509, 5137 (2011)

    Article  Google Scholar 

  10. F.S.-S. Chien et al., Sens. Actuators B Chem. 144, 120 (2010)

    Article  Google Scholar 

  11. G.L. Mar, P.Y. Timbrell, R.N. Lamb, Chem. Mater. 7, 1890 (1995)

    Article  Google Scholar 

  12. G. Wang et al., J. Phys. Chem. C 112, 8850 (2008)

    Article  Google Scholar 

  13. J.Y. Park et al., J. Cryst. Growth 287, 145 (2006)

    Article  ADS  Google Scholar 

  14. W. Lee, M.-C. Jeong, J.-M. Myoung, Acta Mater. 52, 3949 (2004)

    Article  Google Scholar 

  15. P. Atienzar et al., J. Phys. Chem. Lett. 1, 708 (2010)

    Article  Google Scholar 

  16. S.H. Ko et al., Nano Lett. 11, 666 (2011)

    Article  ADS  Google Scholar 

  17. L. Xu, Q. Chen, D. Xu, J. Phys. Chem. C 111, 11560 (2007)

    Article  Google Scholar 

  18. X. Lan et al., Cryst. Growth Des. 11, 3837 (2011)

    Article  Google Scholar 

  19. M. Grätzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  20. Q. Zhang et al., Adv. Mater. 21, 4087 (2009)

    Article  Google Scholar 

  21. C. Liu et al., Appl. Surf. Sci. 257, 7041 (2011)

    Article  ADS  Google Scholar 

  22. C. Xu, D. Gao, J. Phys. Chem. C 116, 7236 (2012)

    Article  Google Scholar 

  23. A.B.F. Martinson et al., Nano Lett. 7, 2183 (2007)

    Article  ADS  Google Scholar 

  24. Q. Zhang, G. Cao, Nano Today 6, 91 (2011)

    Article  Google Scholar 

  25. U. Ozgur et al., J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  26. D. Pradhan, K.T. Leung, Langmuir 24, 9707 (2008)

    Article  Google Scholar 

  27. K.S. Choi, J. Phys. Chem. Lett. 1, 2244 (2010)

    Article  Google Scholar 

  28. F. Xu et al., J. Phys. Chem. C 114, 2776 (2010)

    Article  Google Scholar 

  29. M.A. Kanjwal et al., Appl. Surf. Sci. 258, 3695 (2012)

    Article  ADS  Google Scholar 

  30. Y. Lou et al., Chem. Eng. J. 229, 190 (2013)

    Article  Google Scholar 

  31. R. Zhao et al., Appl. Phys. A 113, 67 (2013)

    Article  ADS  Google Scholar 

  32. D. Guo et al., Sol. Energy 95, 237 (2013)

    Article  ADS  Google Scholar 

  33. V. Manthina et al., J. Phys. Chem. C 116, 23864 (2012)

    Article  Google Scholar 

  34. Z. Qin et al., Mater. Lett. 70, 177 (2012)

    Article  Google Scholar 

  35. M. Law et al., J. Phys. Chem. B 110, 22652 (2006)

    Article  Google Scholar 

  36. N.O.V. Plank et al., Nanotechnology 19, 465603 (2008)

    Article  ADS  Google Scholar 

  37. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  38. H.-H. Ou, S.-L. Lo, Sep. Purif. Technol. 58, 179 (2007)

    Article  Google Scholar 

  39. X. Yin et al., Electrochim. Acta 99, 204 (2013)

    Article  Google Scholar 

  40. A.R. Pietro, P. Calandra, A. Pistone, V.T. Liveri, J. Clust. Sci. 21, 767 (2010)

    Article  Google Scholar 

  41. L. Gu et al., Sens. Actuators B Chem. 159, 1 (2011)

    Article  Google Scholar 

  42. S. Hernández et al., J. Alloys Compd. 615(Supplement 1), S530 (2014)

    Article  Google Scholar 

  43. Y. Feng et al., J. Solid State Chem. 190, 303 (2012)

    Article  ADS  Google Scholar 

  44. K. Park et al., Adv. Mater. 22, 2329 (2010)

    Article  Google Scholar 

  45. W. Meili et al., J. Phys. D Appl. Phys. 42, 155104 (2009)

    Article  Google Scholar 

  46. H. Chen et al., Thin Solid Films 534, 205 (2013)

    Article  ADS  Google Scholar 

  47. H. Cheng et al., Chem. Mater. 7, 663 (1995)

    Article  Google Scholar 

  48. Y. Zheng et al., J. Am. Ceram. Soc. 83, 2634 (2000)

    Article  Google Scholar 

  49. Y. Tian et al., Appl. Surf. Sci. 258, 321 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The first author acknowledges M. Jafarzadegan, A. Ebrahimi, and A. Yousefi PHD students of Tarbiat Modares University. The First author also appreciates Dr. Samadpoor for his kind helps and suggestions. The authors also appreciate Dr. S. Javadian Farzaneh and Dr. N. Alizadeh Motlagh faculties of Tarbiat Modares University for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Saievar-Iranizad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1048 kb)

Supplementary material 2 (TIFF 1895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polkoo, S.S., Saievar-Iranizad, E. & Bayatloo, E. Fine designing 3-dimensional ZnO nanowalls with TiO2 nanoparticles for DSSC application. Appl. Phys. A 119, 1269–1276 (2015). https://doi.org/10.1007/s00339-015-9091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9091-6

Keywords

Navigation