Skip to main content
Log in

Lithium iron phosphate battery electrode integrity following high speed pulsed laser cutting

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser exposures are performed on lithium iron phosphate battery electrodes at \(1\,\hbox {m}/\hbox {s}\) with process parameters based on those leading to the smallest heat affected zone for low power laser exposure at \(100\,\hbox {mm}/\hbox {s}\). Scanning electron microscopy and Raman analysis are performed along the resulting cut edges to characterize macroscopic, chemical and microstructural changes resulting from laser exposure. The increase in velocity with respect to previous studies is found to limit macroscopic changes to areas directly exposed to the laser beam and greatly suppress or completely eliminate microstructural and chemical changes resulting from thermal conduction effects in the metallic conductor layers. These results confirm laser technology as a viable, more flexible solution to mechanical blanking devices for the cutting of lithium iron phosphate battery electrode films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. A. Padhi, K. Nanjundaswamy, J. Goodenough, J. Electrochem. Soc. 144(4), 1188 (1997)

    Article  Google Scholar 

  2. S.Y. Chung, J. Bloking, Y.M. Chiang, Nat. Mater. 1(2), 123 (2002)

    Article  ADS  Google Scholar 

  3. B. Pollet, I. Staffell, J. Shang, Electrochim. Acta 84, 235 (2012)

    Article  Google Scholar 

  4. M. Ramoni, H.C. Zhang, Clean Technol. Environ. Policy 15(6), 881 (2013)

    Article  Google Scholar 

  5. Z. Tian, S. Liu, F. Ye, S. Yao, Z. Zhou, S. Wang, Appl. Surf. Sci. 305, 427 (2014)

    Article  ADS  Google Scholar 

  6. D. Jugović, D. Uskoković, J. Power Sources 190(2), 538 (2009)

    Article  Google Scholar 

  7. B. Scrosati, J. Garche, J. Power Sources 195(9), 2419 (2010)

    Article  Google Scholar 

  8. V. Nguyen, W. Wang, E. Jin, H.B. Gu, Appl. Surf. Sci. 282, 444 (2013)

    Article  ADS  Google Scholar 

  9. D. Anseán, M. González, J. Viera, V. García, C. Blanco, M. Valledor, J. Power Sources 239, 9 (2013)

    Article  Google Scholar 

  10. M. Luetke, V. Franke, A. Techel, T. Himmer, U. Klotzbach, A. Wetzig, E. Beyer, Phys. Procedia 12B, 286 (2011)

    Article  ADS  Google Scholar 

  11. M. Kronthaler, F. Schloegl, J. Kurfer, R. Wiedenmann, M. Zaeh, G. Reinhart, Phys. Procedia 39, 213 (2012)

    Article  ADS  Google Scholar 

  12. A. Lutey, A. Fortunato, A. Ascari, S. Carmignato, C. Leone, Opt. Laser Technol. 65, 164 (2015)

    Article  ADS  Google Scholar 

  13. A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)

    Article  ADS  Google Scholar 

  14. N. Bulgakova, A. Bulgakov, Appl. Phys. A 73(2), 199 (2001)

    Article  ADS  Google Scholar 

  15. N. Bulgakova, A. Bulgakov, L. Babich, Appl. Phys. A 79(4–6), 1323 (2004)

    ADS  Google Scholar 

  16. C. Delacourt, P. Poizot, J.M. Tarascon, C. Masquelier, Nat. Mater. 4(3), 254 (2005)

    Article  ADS  Google Scholar 

  17. E. Markevich, R. Sharabi, O. Haik, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M. Schmidt, N. Schall, C. Stinner, J. Power Sources 196(15), 6433 (2011)

    Article  ADS  Google Scholar 

  18. A. Lutey, M. Fiorini, A. Fortunato, A. Ascari, Appl. Surf. Sci. 322, 85 (2014)

    Article  ADS  Google Scholar 

  19. D. Lee, R. Patwa, H. Herfurth, J. Mazumder, J. Power Sources 210, 327 (2012)

    Article  ADS  Google Scholar 

  20. D. Lee, R. Patwa, H. Herfurth, J. Mazumder, J. Power Sources 240, 368 (2013)

    Article  Google Scholar 

  21. I. Belharouak, C. Johnson, K. Amine, Electrochem. Commun. 7(10), 983 (2005)

    Article  Google Scholar 

  22. C. Porneala, D. Willis, J. Phys. D Appl. Phys. 42(15), 155503 (2009)

    Article  ADS  Google Scholar 

  23. M. Colina, C. Molpeceres, M. Morales, F. Allens-Perkins, G. Guadaño, J. Ocaña, Surf. Eng. 27(6), 414 (2011)

    Article  Google Scholar 

  24. I. Vladoiu, M. Stafe, C. Negutu, I. Popescu, J. Optoelectron. Adv. Mater. 10(12), 3177 (2008)

    Google Scholar 

  25. L. Torrisi, S. Gammino, L. Andò, V. Nassisi, D. Doria, A. Pedone, Appl. Surf. Sci. 210(3–4), 262 (2003)

    Article  ADS  Google Scholar 

  26. A. Lutey, J. Manuf. Sci. Eng. 135(6), 061003 (2013)

    Article  Google Scholar 

  27. A. Slocombe, L. Li, Appl. Surf. Sci. 154–155, 617 (2000)

    Article  Google Scholar 

  28. R. Baddour-Hadjean, J.P. Pereira-Ramos, Chem. Rev. 110(3), 1278 (2010)

    Article  Google Scholar 

  29. F. Tuinstra, J. Koenig, J. Chem. Phys. 53(3), 1126 (1970)

    Article  ADS  Google Scholar 

  30. W. Schulz, D. Becker, J. Franke, R. Kemmerling, G. Herziger, J. Phys. D Appl. Phys. 26(9), 1357 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank IPG Italia S.R.L. for allowing and assisting with the utilization of their laser source for completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian H. A. Lutey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutey, A.H.A., Fiorini, M., Fortunato, A. et al. Lithium iron phosphate battery electrode integrity following high speed pulsed laser cutting. Appl. Phys. A 119, 431–435 (2015). https://doi.org/10.1007/s00339-015-9083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9083-6

Keywords

Navigation