Applied Physics A

, Volume 121, Issue 2, pp 443–449 | Cite as

Nanoimprint lithography of plasmonic platforms for SERS applications

  • Steven J. Barcelo
  • Wei Wu
  • Xuema Li
  • Zhiyong Li
  • R. Stanley Williams
Invited paper

Abstract

In this review, we describe the use of nanoimprint lithography in our group to fabricate plasmonic platforms with nanometer-scale critical features that would be significantly more expensive using other fabrication techniques: 3-D cones that have tips with a sub-10 nm radius of curvature, active polygonal nanofingers with sub-2 nm spacing, and deterministic nanoparticle assemblies both on arbitrary substrates and in solution. These nanostructures were primarily designed to make surface-enhanced Raman Scattering a viable analytical technique for low-level chemical and biological contaminants, but the same fabrication methods should also be useful for other nanophotonic and nanoelectronic applications.

References

  1. 1.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995)CrossRefADSGoogle Scholar
  2. 2.
    J. Haisma, M. Verheijen, K. van den Heuvel, J. van den Berg, J. Vac. Sci. Technol. B 14, 4124 (1996)CrossRefGoogle Scholar
  3. 3.
    M. Colburn, S.C. Johnson, M.D. Stewart, S. Damle, T.C. Bailey, B.Choi, M. Wedlake, T.B. Michaelson, S.V. Sreenivasan, J.G. Ekerdt, C.G. Wilson, Proc. SPIE Emerg. Lithogr. Technol. III 3676, 379 (1999)CrossRefADSGoogle Scholar
  4. 4.
    M. Li, S.Y. Chou, Appl. Phys. Lett. 78, 3322 (2001)CrossRefADSGoogle Scholar
  5. 5.
    K. Ansari, J.A. van Kan, A.A. Bettiol, F. Watt, Appl. Phys. Lett. 85, 476 (2004)CrossRefADSGoogle Scholar
  6. 6.
    H. Tan, A. Gilbertson, S.Y. Chou, J. Vac. Sci. Technol. B 16, 3926 (1998)CrossRefGoogle Scholar
  7. 7.
    S.H. Ahn, J.S. Kim, L.J. Guo, J. Vac. Sci. Technol. B 25, 2388 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.-L. Loo, R.L. Willet, K.W. Baldwin, J.A. Rodgers, Appl. Phys. Lett. 81, 562 (2002)CrossRefADSGoogle Scholar
  9. 9.
    E.J. Smythe, M.D. Dickey, G.M. Whitesides, F.A. Capasso, ACS Nano 3, 59 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Fleischman, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 123 (1974)CrossRefADSGoogle Scholar
  11. 11.
    D.L. Jeanmarie, R.P. van Duyne, J. Electoanal. Chem. 84, 1 (1977)CrossRefGoogle Scholar
  12. 12.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)CrossRefGoogle Scholar
  13. 13.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)CrossRefADSGoogle Scholar
  14. 14.
    E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)CrossRefADSGoogle Scholar
  15. 15.
    K.L. Wustholtz, A.-I. Henry, J.M. McMahon, R.G. Freeman, N. Valley, M.E. Piotti, M.J. Natan, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 132, 10903 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Tanabe, T. Matsuno, N. Kashiwagi, H. Sakai, K. Inoue, A. Tamura, J. Vac. Sci. Technol. B 14, 3248 (1996)CrossRefGoogle Scholar
  17. 17.
    T.S. Ravi, R.B. Marcus, D. Liu, J. Vac. Sci. Technol. B 9, 2733 (1991)CrossRefGoogle Scholar
  18. 18.
    L.Y. Cao, B. Nabet, J.E. Spanier, Phys. Rev. Lett. 96, 157402 (2006)CrossRefADSGoogle Scholar
  19. 19.
    F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L.C. Andreani, E. Di Fabrizio, Nat. Nanotechnol. 5, 67 (2010)CrossRefADSGoogle Scholar
  20. 20.
    N.L. Garrett, P. Vukusic, F. Ogrin, E. Sirotkin, C.P. Winlove, J. Moger, J. Biophoton. 2, 157 (2009)CrossRefGoogle Scholar
  21. 21.
    K.B. Talian, A. Mogensen, D. Oriňák, J.Hübner Kaniansky, J. Raman Spectrosc. 40, 982 (2009)CrossRefADSGoogle Scholar
  22. 22.
    J. Tang, F.S. Ou, H.P. Kuo, M. Hu, W.F. Stickle, Z. Li, R.S. Williams, Appl. Phys. A 96, 793 (2009)CrossRefADSGoogle Scholar
  23. 23.
    M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Appl. Phys. Lett. 84, 5299 (2004)CrossRefADSGoogle Scholar
  24. 24.
    J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science 328, 1135 (2010)CrossRefADSGoogle Scholar
  25. 25.
    L. Wang, L. Xu, H. Kuang, C. Xu, N.A. Kotov, Acc. Chem. Res. 45, 1916 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Hu, F.S. Ou, W. Wu, I. Naumov, X. Li, A.M. Bratkovsky, R.S. Williams, Z. Li, J. Am. Chem. Soc. 132, 12820 (2010)CrossRefGoogle Scholar
  27. 27.
    F.S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A.M. Bratkovsky, X. Li, R.S. Williams, Z. Li, Nano Lett. 11, 2538 (2011)CrossRefADSGoogle Scholar
  28. 28.
    H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Z. Yu, A. Raman, S. Fan, Appl. Phys. A 105, 329 (2011)CrossRefADSGoogle Scholar
  30. 30.
    L.O. Dintz, E. Margea Jr, F.D. Nunes, B.-H.V.A. Borges, J. Opt. 13, 115001 (2011)CrossRefADSGoogle Scholar
  31. 31.
    M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, Appl. Phys. B Laser Opt. 101, 263 (2010)CrossRefADSGoogle Scholar
  32. 32.
    S.J. Barcelo, A. Kim, G.A. Gibson, K.J. Norris, M. Yamakawa, Z. Li, Nanotechnology 25, 155302 (2014)CrossRefADSGoogle Scholar
  33. 33.
    S.J. Tan, M.J. Campolongo, D. Luo, W. Cheng, Nat. Nanotechnol. 6, 268 (2011)CrossRefADSGoogle Scholar
  34. 34.
    B. Yan, A. Thubagere, W.R. Premasiri, L.D. Ziegler, L. Dal Negro, B.M. Reinhard, ACS Nano 3, 1190 (2009)CrossRefGoogle Scholar
  35. 35.
    C. Sonnichsen, B.M. Reinhard, J. Liphardt, A.P. Alivisatos, Nat. Biotechnol. 23, 741 (2005)CrossRefGoogle Scholar
  36. 36.
    D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y.D. Suh, J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011)CrossRefADSGoogle Scholar
  37. 37.
    C.L. Zavaleta, M.F. Kircher, S.S. Gambhir, J. Nucl. Med. 52, 1839 (2011)CrossRefGoogle Scholar
  38. 38.
    V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, Nat. Biotechnol. 24, 1211 (2006)CrossRefGoogle Scholar
  39. 39.
    Y. Cui, I.Y. Phang, Y.H. Lee, M.R. Lee, Q. Zhang, X.Y. Ling, Chem. Commun. (2015). doi:10.1039/C4CC08596E Google Scholar
  40. 40.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996)CrossRefGoogle Scholar
  41. 41.
    C.L. Zavaleta, M.F. Kircher, S.S. Gambhir, J. Nucl. Med. 52, 1839 (2011)CrossRefGoogle Scholar
  42. 42.
    V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, Nat. Biotechnol. 24, 1211 (2006)CrossRefGoogle Scholar
  43. 43.
    Y. Cui, I.Y. Phang, Y.H. Lee, M.R. Lee, Q. Zhang, X.Y. Ling, Chem. Comm. (2015). doi:10.1039/C4CC08596E Google Scholar
  44. 44.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Steven J. Barcelo
    • 1
  • Wei Wu
    • 2
  • Xuema Li
    • 1
  • Zhiyong Li
    • 1
  • R. Stanley Williams
    • 1
  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA
  2. 2.Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations