Applied Physics A

, Volume 119, Issue 2, pp 415–424 | Cite as

Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate

Rapid communications

Abstract

The effect of interatomic interaction between graphene and 4H-SiC on their interfacial thermal transport is investigated by empirical molecular dynamics simulation. Two magnitudes of interfacial thermal conductance (ITC) improvement are observed for graphene/4H-SiC interface interacting through covalent bonds than through van der Waals interaction, which can be explained by the bond strength and the number of covalent bonds. Besides, it is found that the ITC of covalent graphene/C-terminated SiC is larger than that Si-terminated SiC, which is due to the stronger bond strength of C–C than that of C–Si. The effect of crystallinity of the substrate is studied, and the result shows that the ITC of graphene/a-SiC is higher than that of graphene/c-SiC. These results are crucial to the understanding of thermal transport across graphene interfaces, which are useful for thermal design in graphene-based transistors.

References

  1. 1.
    A.K. Geim, Science 324(5934), 1530 (2009)CrossRefADSGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007)ADSGoogle Scholar
  3. 3.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8(3), 902 (2008)ADSGoogle Scholar
  4. 4.
    J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9(7), 2730 (2009)ADSGoogle Scholar
  5. 5.
    J. Zhang, X. Huang, Y. Yue, J. Wang, X. Wang, Phys. Rev. B 84(23), 235416 (2011)ADSGoogle Scholar
  6. 6.
    K.M.F. Shahil, A.A. Balandin, Nano Lett. 12(2), 861 (2012)ADSGoogle Scholar
  7. 7.
    M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen, J.C. Tsang, P. Avouris, Nano Lett. 9(5), 1883 (2009)ADSGoogle Scholar
  8. 8.
    J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Science 328(5975), 213 (2010)CrossRefADSGoogle Scholar
  9. 9.
    M.M. Sadeghi, I. Jo, L. Shi, Proc. Nat. Acad. Sci. 110(41), 16321 (2013)ADSGoogle Scholar
  10. 10.
    J. Chen, G. Zhang, B. Li, Nanoscale 5(2), 532 (2013)CrossRefADSGoogle Scholar
  11. 11.
    Z.-Y. Ong, E. Pop, Phys. Rev. B 84(7), 075471 (2011)ADSGoogle Scholar
  12. 12.
    B. Qiu, X. Ruan, Appl. Phys. Lett. 100(19), 193101 (2012)ADSGoogle Scholar
  13. 13.
    Z. Chen, W. Jang, W. Bao, C.N. Lau, C. Dames, Appl. Phys. Lett. 95(16), 161910 (2009)ADSGoogle Scholar
  14. 14.
    K.F. Mak, C.H. Lui, T.F. Heinz, Appl. Phys. Lett. 97(22), 221904 (2010)ADSGoogle Scholar
  15. 15.
    Y.K. Koh, M.-H. Bae, D.G. Cahill, E. Pop, Nano Lett. 10(11), 4363 (2010)ADSGoogle Scholar
  16. 16.
    X. Tang, S. Xu, J. Zhang, X. Wang, ACS Appl. Mater. 6(4), 2809 (2014)Google Scholar
  17. 17.
    X. Yu, L. Zhang, X. Song, T. Xi, Y. Zhao, J. Liu, X. Yang, M. Chen, P. Yang, Int. J. Mater. Struct. Intergr. 6(1), 65 (2012)Google Scholar
  18. 18.
    P.E. Hopkins, M. Baraket, E.V. Barnat, T.E. Beechem, S.P. Kearney, J.C. Duda, J.T. Robinson, S.G. Walton, Nano Lett. 12(2), 590 (2012)ADSGoogle Scholar
  19. 19.
    C. Shu-Wei, K.N. Arun, J.B. Markus, J. Phys-Condens, Matter. 24(24), 245301 (2012)Google Scholar
  20. 20.
    L. Chen, Z. Huang, S. Kumar, Appl. Phys. Lett. 103(12), 123110 (2013)ADSGoogle Scholar
  21. 21.
    K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, Nat. Mater. 8(3), 203 (2009)ADSGoogle Scholar
  22. 22.
    M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W. De Heer, Nat. Nanotechnol. 5(10), 727 (2010)ADSGoogle Scholar
  23. 23.
    R. Mao, B.D. Kong, K.W. Kim, T. Jayasekera, A. Calzolari, M. Buongiorno, Nardelli. Appl. Phys. Lett. 101(11), 113111 (2012)ADSGoogle Scholar
  24. 24.
    H. Wang, J. Gong, Y. Pei, Z. Xu, ACS Appl. Mater. 5(7), 2599 (2013)Google Scholar
  25. 25.
    A. Mattausch, O. Pankratov, Phys. Rev. Lett. 99(7), 076802 (2007)ADSGoogle Scholar
  26. 26.
    R. Wilson, D.G. Cahill, Phys. Rev. Lett. 108(25), 255901 (2012)ADSGoogle Scholar
  27. 27.
    S. Hertel, D. Waldmann, J. Jobst, A. Albert, M. Albrecht, S. Reshanov, A. Schöner, M. Krieger, H.B. Weber, Nat Commun 3, 957 (2012)ADSGoogle Scholar
  28. 28.
    Z. Xu, M.J. Buehler, J Phys-Condens Mat. 24(47), 475305 (2012)ADSGoogle Scholar
  29. 29.
    V. Sorkin, Y.W. Zhang, Phys. Rev. B 82(8), 085434 (2010)ADSGoogle Scholar
  30. 30.
    M. Li, Y. Yue, RSC Adv. 4(44), 23010 (2014)Google Scholar
  31. 31.
    J. Tersoff, Phys. Rev. B 39(8), 5566 (1989)ADSGoogle Scholar
  32. 32.
    J. Tersoff, Phys. Rev. B 49(23), 16349 (1994)ADSGoogle Scholar
  33. 33.
    C. Tang, L. Meng, H. Xiao, J. Zhong, J. Appl. Phys. 103(6), 063505 (2008)ADSGoogle Scholar
  34. 34.
    L. Lindsay, D.A. Broido, Phys. Rev. B 81(20), 205441 (2010)ADSGoogle Scholar
  35. 35.
    S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)ADSMATHGoogle Scholar
  36. 36.
    S. Nosé, J. Chem. Phys. 81(1), 511 (1984)ADSGoogle Scholar
  37. 37.
    A.M.V.D. Zande, R.A. Barton, J.S. Alden, C.S. Ruiz-Vargas, W.S. Whitney, P.H.Q. Pham, J. Park, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 10(12), 4869 (2010)ADSGoogle Scholar
  38. 38.
    J.E. Huheey, E.A. Keiter, R.L. Keiter, O.K. Medhi, Inorganic chemistry: principles of structure and reactivity. (Pearson Education India, 2006), pp. A-21Google Scholar
  39. 39.
    T. Luo, J.R. Lloyd, Adv. Funct. Mater. 22(12), 2495 (2012)Google Scholar
  40. 40.
    E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61(3), 605 (1989)ADSGoogle Scholar
  41. 41.
    B. Li, J. Lan, L. Wang, Phys. Rev. Lett. 95(10), 104302 (2005)ADSGoogle Scholar
  42. 42.
    T.S. English, J.C. Duda, J.L. Smoyer, D.A. Jordan, P.M. Norris, L.V. Zhigilei, Phys. Rev. B 85(03), 035438 (2012)ADSGoogle Scholar
  43. 43.
    J. Zhang, Y. Wang, X. Wang, Nanoscale 5(23), 11598 (2013)CrossRefADSGoogle Scholar
  44. 44.
    C.-C. Chen, Z. Li, L. Shi, S.B. Cronin, Appl. Phys. Lett. 104(8), 081908 (2014)ADSGoogle Scholar
  45. 45.
    Y. Yue, J. Zhang, X. Wang, Small 7(23), 3324 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Power and Mechanical EngineeringWuhan UniversityWuhanChina
  2. 2.Holland Computing CenterUniversity of Nebraska LincolnLincolnUSA

Personalised recommendations