Applied Physics A

, Volume 121, Issue 2, pp 467–479

Nanoimprint lithography enables memristor crossbars and hybrid circuits

  • Qiangfei Xia
  • Wei Wu
  • Gun-Young Jung
  • Shuang Pi
  • Peng Lin
  • Yong Chen
  • Xuema Li
  • Zhiyong Li
  • Shih-Yuan Wang
  • R. Stanley Williams
Invited Paper


Memristive devices are promising building blocks for enhanced CMOS hardware in data storage and computing. Nanoimprint lithography (NIL) has been an enabling technology in the past decade for exploring novel devices and circuits. In this paper, the authors review the progress and technical aspects of the fabrication and integration of memristor crossbar arrays using NIL. Since the key component of successful fabrication is the imprint mold, the material selection, master mold fabrication, anti-sticking treatment and cleaning are first discussed. The requirements and composition of imprint resists, in particular low-viscosity liquid resists that cross-link upon ultraviolet light radiation, are investigated next. After the description of imprint systems and alignment mechanisms, a disruptive self-alignment fabrication scheme for crossbar arrays is presented. Finally, the first implementation of a memristor/CMOS hybrid circuit using NIL on foundry-made CMOS substrates, together with more recent developments, is recounted. The challenges and possible solutions for NIL as a primary tool for crossbar fabrication are also proposed and discussed.


  1. 1.
    L.O. Chua, Memristor–missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefADSGoogle Scholar
  3. 3.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRefADSGoogle Scholar
  4. 4.
    A. Chen, S. Haddad, Y.-C. Wu, T. –N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, M. Taguchi, Non-volatile resistive switching for advanced memory applications. in: Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International. IEEE, pp. 765–768 (2005). doi:10.1109/IEDM.2005.1609461
  5. 5.
    I.G. Baek, D.C. Kim, M.J. Lee, H.-J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, J.C. Park, Y.K. Cha, S.O. Park, H.S. Kim, I.K. Yoo, U-In Chung, J.T. Moon, B.I. Ryu, Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. in: Proc. Electron Device Meeting, San Francisco, CA, 2005, pp. 750–753Google Scholar
  6. 6.
    J. Borghetti et al., ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Q.F. Xia et al., Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009)CrossRefADSGoogle Scholar
  8. 8.
    G.S. Snider, Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007)CrossRefGoogle Scholar
  9. 9.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)CrossRefADSGoogle Scholar
  10. 10.
    S. Pi, M. Ghadiri-Sadrabadi, J. C. Bardin, Q Xia, “Nanoscale memristive radiofrequency switches”, under revision, 2015Google Scholar
  11. 11.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995)CrossRefADSGoogle Scholar
  12. 12.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996)CrossRefADSGoogle Scholar
  13. 13.
    Y. Chen et al., Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610 (2003)CrossRefADSGoogle Scholar
  14. 14.
    Y. Chen, G.-Y. Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 462–468 (2003)CrossRefADSGoogle Scholar
  15. 15.
    D.R. Stewart et al., Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2003)CrossRefADSGoogle Scholar
  16. 16.
    J. Haisma, M. Verheijen, K. vanden Heuvel, J. vanden Berg, Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14, 4124–4128 (1996)CrossRefGoogle Scholar
  17. 17.
    M. Colburn, S. Johnson, M. Stewart et al., Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE 3676, 379–389 (1999)CrossRefADSGoogle Scholar
  18. 18.
    J.K.W. Yang et al., Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography. J. Vac. Sci. Technol. B 27, 2622 (2009)CrossRefGoogle Scholar
  19. 19.
    W.-D. Li, W. Wu, R.S. Williams, Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns. J. Vac. Sci. Technol. B 30, 06F304 (2012)Google Scholar
  20. 20.
    W. Wu, G.Y. Jung, D.L. Olynick et al., One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl. Phys. A 80, 1173–1178 (2005)CrossRefGoogle Scholar
  21. 21.
    B. Govoreanu et al., 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. Electron Devices Meeting (IEDM), 2011 IEEE International, 31.6.1–31.6.4 (2011). doi:10.1109/IEDM.2011. 6131652
  22. 22.
    N.A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. Petroff, Health J. R. Sci. 300, 112 (2003)Google Scholar
  23. 23.
    G.-Y. Jung et al., Circuit fabrication at 17 nm half-pitchby nanoimprint lithography. Nano Lett. 6, 351–354 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Z. Yu et al., Fabrication of 30 nm pitch imprint moulds by frequency doubling for nanowire arrays. Nanotechnology 17, 4956–4961 (2006)CrossRefADSGoogle Scholar
  25. 25.
    S. Pi, P. Lin, Q. Xia, Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography. J. Vac. Sci. Technol. B 31, 06FA02 (2013)CrossRefGoogle Scholar
  26. 26.
    P. Lin, X. Qiangfei, “TiO2 Sol–gel based memristor crossbar arrays with triangular top and bottom metal electrodes”, EIPBN’14, Washington, DC, May 27–30, 2014. Lin14 Si wet etchingGoogle Scholar
  27. 27.
    G.Y. Jung, W. Wu, Z. Li, Y. Chen, S.Y. Wang, W.M. Tong, R.S. Williams, Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21, 1158 (2005)CrossRefGoogle Scholar
  28. 28.
    L. Chen, X. Deng, J. Wang, K. Takahashi, F. Liu, Defect control in nanoimprint lithography. J. Vac. Sci. Technol. B 23, 2933–2938 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Bailey, B.J. Choi, M. Colburn, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, Step and flash imprint lithography: template surface treatment and defect analysis. J. Vac. Sci. Technol. B 18, 3572–3577 (2000)CrossRefGoogle Scholar
  30. 30.
    P. Lin, S. Pi, H. Jiang, X. Qiangfei, Mold cleaning with polydimethylsiloxane for nanoimprint lithography. Nanotechnology 24, 325301 (2013)CrossRefADSGoogle Scholar
  31. 31.
    H. Gao, H. Tan, W. Zhang, K. Morton, S.Y. Chou, Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field. Nano Lett. 6(11), 2438–2441 (2006)CrossRefADSGoogle Scholar
  32. 32.
    X. Liang, H. Tan, Z. Fu, S.Y. Chou, Air bubble formation and dissolution in dispensing nanoimprint lithography. Nanotechnology 18, 025303 (2007)CrossRefADSGoogle Scholar
  33. 33.
    W. Wu et al., Sub-10 nm nanoimprint lithography by wafer bowing. Nano Lett. 8(11), 3865–3869 (2008)CrossRefADSGoogle Scholar
  34. 34.
    N.H. Li, W. Wu, S.Y. Chou, Sub-20-nm alignment in nanoimprint lithography using Moire fringe. Nano Lett. 6(11), 2626–2629 (2006)CrossRefADSGoogle Scholar
  35. 35.
    Q.F. Xia, J.J. Yang, W. Wu, X. Li, R.S. Williams, Self-aligned memristor cross point arrays fabricated with one nanoimprint lithography step. Nano Lett. 10, 2909–2914 (2010)CrossRefADSGoogle Scholar
  36. 36.
    Q. Xia, M.D. Pickett, J.J. Yang, X.M. Li, W. Wu, G. Medeiros-Ribeiro, R.S. Williams, Two- and three-terminal resistive switches: nanometer-scale memristors and memistors. Adv. Funct. Mater. 21, 2660–2665 (2011)CrossRefGoogle Scholar
  37. 37.
    Q.F. Xia, Nanoscale resistive switches: devices, fabrication and integration. Appl. Phys. A 102, 955–965 (2011)CrossRefADSGoogle Scholar
  38. 38.
    D.B. Strukov, K.K. Likharev, CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)CrossRefADSGoogle Scholar
  39. 39.
    G.S. Snider, R.S. Williams, Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007)CrossRefADSGoogle Scholar
  40. 40.
    Q.F. Xia, M.D. Pickett, J.J. Yang, M.-X. Zhang, J. Borghetti, X. Li, W. Wu, G. Medeiros-Ribeiro, R.S. Williams, Impact of geometry on the performance of memristive nanodevices. Nanotechnology 22, 254026 (2011)CrossRefADSGoogle Scholar
  41. 41.
    P. Lin, S. Pi, Q. Xia, 3D integration of planar crossbar memristive devices with CMOS substrate. Nanotechnology 25, 405202 (2014)CrossRefGoogle Scholar
  42. 42.
    Q.F. Xia, W.M. Tong, W. Wu et al., On the integration of memristors with CMOS using nanoimprint lithography. Proc. SPIE 7271, 727106 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qiangfei Xia
    • 1
  • Wei Wu
    • 2
  • Gun-Young Jung
    • 3
  • Shuang Pi
    • 1
  • Peng Lin
    • 1
  • Yong Chen
    • 4
  • Xuema Li
    • 5
  • Zhiyong Li
    • 5
  • Shih-Yuan Wang
    • 6
  • R. Stanley Williams
    • 5
  1. 1.Nanodevices and Integrated Systems Laboratory, Department of Electrical and Computer EngineeringUniversity of MassachusettsAmherstUSA
  2. 2.Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  4. 4.Department of Mechanical and Aerospace Engineering, and Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  5. 5.Hewlett-Packard LaboratoriesPalo AltoUSA
  6. 6.Jack Baskin School of EngineeringUniversity of CaliforniaSanta CruzUSA

Personalised recommendations