Skip to main content
Log in

Square ferrite nanorods/carbon composite: synthesis and electromagnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The square ferrite/carbon composite, which consists of single-crystalline Fe3O4 nanorods (~80 nm width, 600–800 nm length), has been prepared by a hydrothermal process and undergone subsequent heat treatment at 750, 800, 850 and 930 °C, respectively. The X-ray diffraction, infrared spectroscopy, Raman spectrum and high-resolution transmission electron microscopy confirmed the transforming of ferrite/carbon to ferroalloy/graphite when the annealing temperature rose from 750 to 930 °C, and the graphitization degree increased as the integral area ratio of D1–G band (I D1/I G) decreased from 2.83 to 1.59. The saturation magnetization increased from 87.65 to 156.81 emu g−1, while residual magnetization and coercivity decreased from 12.39 emu g−1 and 231.33–2.937 emu g−1 and 72.71 Oe, respectively. The dielectric/magnetic studies showed that the real part (ε′) and imaginary part (ε″) of the permittivity declined from 9.43–10.98 and 1.20–1.92 to 3.54–3.73 and 0.02–0.10, respectively, while the permeability changed little. The calculated maximum reflection loss (RL) of 750 °C annealing sample reached −11.76 dB at 12.56 GHz with 2 mm thickness; by contrast, the maximum RL of 930 °C annealing sample only reached −2.6 dB at 16.8 GHz. Such difference may be attributed to the enhancement of dielectric properties, complementation of dielectric/magnetic losses and anisotropy in morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.J. Vinoy, R.M. Jha, Radar Absorbing Materials (Kluwer Academic Publishers, Boston, 1996)

    Book  Google Scholar 

  2. T. Tsutaoka, M. Ueshima, T. Tohunaga, J. Appl. Phys. 78, 3983–3991 (1995)

    Article  ADS  Google Scholar 

  3. P. Saini, V. Choudhary, N. Vijayan et al., J. Phys. Chem. C 116, 13403–13412 (2012)

    Article  Google Scholar 

  4. S.M. Abbas, R. Chattterjee, A.K. Dixit et al., J. Appl. Phys. 101, 074105 (2007)

    Article  ADS  Google Scholar 

  5. J. Joo, C.Y. Lee, H.G. Song et al., Synth. Met. 102, 1349 (1999)

    Google Scholar 

  6. D.D.L. Chung, Carbon 39, 79–285 (2001)

    Google Scholar 

  7. J.-M. Thomassin, C. Je´roˆme, T. Pardoen et al., Mater. Sci. Eng. R Rep. 74, 211–232 (2013)

    Article  Google Scholar 

  8. P. Saini, M. Arora, G. Gupta et al., Nanoscale 5, 4330–4346 (2013)

    Article  ADS  Google Scholar 

  9. J.-H. Eom, Y.-W. Kim, S. Raju, J. Asian Ceram. Soc. 1, 220–242 (2013)

    Article  Google Scholar 

  10. R. Che, L.-M. Peng, X. Duan et al., Adv. Mater. 16(5), 401–405 (2004)

    Article  ADS  Google Scholar 

  11. Y. Ren, C. Zhu, S. Zhang et al., Nanoscale 5, 12296–12303 (2013)

    Article  ADS  Google Scholar 

  12. Y.-J. Chen, P. Gao, R.-X. Wang et al., J. Phys. Chem. C 113, 10061–10064 (2009)

    Article  Google Scholar 

  13. Y. Wang, L. Wang, W. Hongjing et al., Materials 6, 1520–1529 (2003)

    Article  ADS  Google Scholar 

  14. D. Yuping, H. Ma, L. Shunhua et al., Physica B (Am Neth) 405, 1826–1831 (2010)

    Article  ADS  Google Scholar 

  15. P. Saini, V. Choudhary, B.P. Singh et al., Mater. Chem. Phys. 113, 919 (2009)

    Article  Google Scholar 

  16. P. Saini, V. Choudhary, B.P. Singh, et al. Synth. Met. 161, 1522 (2011)

    Article  Google Scholar 

  17. P. Saini, M. Arora, in New Polymers for Special Applications, ed. By De Souza Gomes A. (InTech, Croatia, 2012), p. 71–112

  18. P. Saini, V. Choudhary, J. Nanopart. Res. 15, 1415 (2013)

    Article  Google Scholar 

  19. P. Saini, V. Choudhary, S.K. Dhawan, Polym. Adv. Technol. 23, 343 (2012)

    Article  Google Scholar 

  20. W. Zhou, H. Xiujie, X. Bai et al., ACS Appl. Mater. Interfaces 3(10), 3839 (2011)

    Article  Google Scholar 

  21. B. Zhang, D. Yunchen, P. Zhang et al., J. Appl. Polym. Sci. 130, 1909–1916 (2013)

    Article  Google Scholar 

  22. T. Fried, G. Shemer, G. Markovich, Adv. Mater. 13, 1158–1161 (2001)

    Article  Google Scholar 

  23. F. Liu, P. Cao, H. Zhang et al., Adv. Mater. 17, 1893–1897 (2005)

    Article  Google Scholar 

  24. M. Grätzel, Nature 414, 338–344 (2001)

    Article  ADS  Google Scholar 

  25. N. Ding, N. Yan, C. Ren et al., Anal. Chem. 82, 5897–5899 (2010)

    Article  Google Scholar 

  26. T. Zeng, W.-W. Chen, C.M. Cirtiu et al., Green Chem. 12, 570–573 (2010)

    Article  Google Scholar 

  27. W. Xiao-Jin, R. Jiang, W. Bing et al., Adv. Synth. Catal. 351, 3150–3156 (2009)

    Article  Google Scholar 

  28. A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004)

    Article  ADS  Google Scholar 

  29. P.-C. Chen, G. Shen, C. Zhou et al., IEEE Trans. Nano. Tech. 7, 668–682 (2008)

    Article  ADS  Google Scholar 

  30. F. Hao, H. Lin, C. Zhou et al., Phys. Chem. Chem. Phys. 13, 15918–15924 (2011)

    Article  Google Scholar 

  31. J.H. Maeng, D.-H. Lee, K.H. Jung et al., Biomaterials 31, 4995–5006 (2010)

    Article  Google Scholar 

  32. J. Kim, J.E. Lee, S.H. Lee et al., Adv. Mater. 20, 478–483 (2008)

    Article  Google Scholar 

  33. L. Wang, W. Qiong, S. Tang et al., RSC Adv. 3, 23454–23460 (2013)

    Article  Google Scholar 

  34. E.S.M. Lee, B. Shuter, J. Chan et al., Biomaterials 31, 3296–3306 (2010)

    Article  Google Scholar 

  35. L. Wang, K.-G. Neoh, E.-T. Kang et al., Biomaterials 31, 3502–3511 (2010)

    Article  Google Scholar 

  36. D. Zhang, Z. Liu, S. Han et al., Nano Lett. 4, 2151–2155 (2004)

    Article  ADS  Google Scholar 

  37. C.-J. Jia, L.-D. Sun, Z.-G. Yan et al., Angew. Chem. 117, 4402–4407 (2005)

    Article  Google Scholar 

  38. X. Zhou, Y. Shi, L. Zhong et al, Hydrothermal Synthesis, Growth Mechanism and Magnetic Property of Fe3O4 Nanorod (2012), http://www.paper.edu.cn/releasepaper/content/201209-232. Accessed 21 Sept 2012

  39. C.-J. Jia, L.-D. Sun, F. Luo et al., J. Am. Chem. Soc. 130, 16968–16977 (2008)

    Article  Google Scholar 

  40. S. Mathur, S. Barth, U. Werner et al., Adv. Mater. 20, 1550–1554 (2008)

    Article  Google Scholar 

  41. Y.-L. Chueh, M.-W. Lai, J.-Q. Liang et al., Adv. Funct. Mater. 16, 2243–2251 (2006)

    Article  Google Scholar 

  42. S. Barth, S. Estrade, F. Hernandez-Ramirez et al., Cryst. Growth Des. 9, 1077–1081 (2009)

    Article  Google Scholar 

  43. M.H. Kim, B. Lee, S. Lee et al., Nano Lett. 9, 4138–4146 (2009)

    Article  ADS  Google Scholar 

  44. Y. Wang, I. Ramos, J. J. Santiago-Aviles et al, in Nanofibers, ed. by A. Kumar (InTech, Rijeka): 90–108 (2010)

  45. Y. Liu, P. Yang, W. Wang et al., CrystEngComm 12, 3717–3723 (2010)

    Article  Google Scholar 

  46. Japan Metal Society, Metallurgy of Iron and Steel (Metallurgical Industry Press, Beijing, 1985)

    Google Scholar 

  47. X.H. Huang, Metallurgy Principle of Iron and Steel, 3rd edn. (Metallurgical Industry Press, Beijing, 2002)

    Google Scholar 

  48. H. Wang, L. Xu, Y. Di et al., Nanotechnology 4, 33–39 (2007)

    Google Scholar 

  49. W. Yonghui, G. Chang, Y. Zhao et al., J. Nanopart. Res. 16, 2358 (2014)

    Article  Google Scholar 

  50. A. Sadezky, H. Muckenhuber, H. Grothe et al., Carbon 43, 1731–1742 (2005)

    Article  Google Scholar 

  51. A. Cuesta, P. Dhamelincourt, J. Laureyns et al., Carbon 32, 1523–1532 (1994)

    Article  Google Scholar 

  52. H.M. Zhu, X.G. Jiang, J.H. Yan et al., J. Anal. Appl. Pyrolysis 82, 1–9 (2008)

    Article  Google Scholar 

  53. C. Yang, W. Jiajia, Y. Hou et al., Chem. Commun. 47, 5130–5141 (2011)

    Article  Google Scholar 

  54. Z.L. Wang, J. Phys. Chem. B 104, 1153–1175 (2000)

    Article  Google Scholar 

  55. D. Yan, S. Cheng, R.F. Zhuo et al., Nanotechnology 20, 105706 (2009)

    Article  ADS  Google Scholar 

  56. X.F. Zhang, X.L. Dong, H. Huang et al., Appl. Phys. Lett. 89, 053115 (2006)

    Article  ADS  Google Scholar 

  57. Y. Naito, K. Suetake, IEEE Trans. Micro Theor. Tech. 19, 65–72 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge School of Mechatronical Engineering, Beijing Institute of Technology for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Wan or Xiao Jing Qiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Qiao, X.J., Ren, Q.G. et al. Square ferrite nanorods/carbon composite: synthesis and electromagnetic properties. Appl. Phys. A 119, 773–781 (2015). https://doi.org/10.1007/s00339-015-9027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9027-1

Keywords

Navigation