Skip to main content
Log in

Nonlinear properties of antimony-doped BaTiO3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Barium titanate nanopowders doped with various concentrations of antimony were synthesized by polymeric precursors method based on modified Pechini process. Obtained powders were pressed and sintered at 1,573 K for 8 h. The temperature dependence of dielectric permittivity pointed on the significant influence of added antimony on dielectric properties of obtained materials. The analysis of impedance spectrum in the temperature range 250–445 K has shown the presence of one semicircle that corresponds to the grain contribution but impedance spectrum at 773 K showed possible overlapping of two semicircles indicating also grain boundary resistivity. The total specific resistivity obtained from impedance analysis showed modest PTCR jump in the heavily doped barium titanate ceramics. The electric field dependence of permittivity of the ceramics was investigated in detail. The experimental data were analyzed using Johnson model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venskatesh, N. Setter, J. Electroceram. 11, 5–66 (2003)

    Article  Google Scholar 

  2. R.E. Treece, J.B. Thompson, C.H. Mueller, T. Rivkin, M.W. Cromar, IEEE Trans. Appl. Supercond. 7(2), 2363–2366 (1997)

    Article  Google Scholar 

  3. Y. Somiya, A.S. Bhalla, L. Eric Cross, Int. J. Inorg. Mater. 3, 709–714 (2001)

    Article  Google Scholar 

  4. Q. Zhang, J. Zhai, L.B. Kong, J. Adv. Diel. 2, 1230002 (2012)

    Article  Google Scholar 

  5. R.H. Liang, X.L. Dong, Y. Chen, F. Cao, Y.L. Wang, Ceram. Int. 33, 957 (2007)

    Article  Google Scholar 

  6. X.Y. Wei, Y.J. Feng, L.M. Hang, S. Xia, L. Jin, X. Yao, Mater. Sci. Eng. B 120, 64 (2005)

    Article  Google Scholar 

  7. X.J. Chou, J.W. Zhai, H. Jiang, X. Yao, J. Appl. Phys. 102, 084106 (2007)

    Article  ADS  Google Scholar 

  8. J.J. Zhang, J.W. Zhai, X.J. Chou, X. Yao, Mater. Chem. Phys. 111, 409 (2008)

    Article  Google Scholar 

  9. X.J. Chou, J.W. Zhai, X. Yao, J. Am. Ceram. Soc. 90, 2799 (2007)

    Article  Google Scholar 

  10. Y.Y. He, Y.B. Xu, T. Liu, C.L. Zeng, W.P. Chen, J. Alloys Compd. 509, 904 (2011)

    Article  Google Scholar 

  11. T. Maiti, R. Guo, A.S. Bhalla, J. Phys. D Appl. Phys. 40, 4355 (2007)

    Article  ADS  Google Scholar 

  12. H. Diamond, J. Appl. Phys. 32, 909–915 (1961)

    Article  ADS  Google Scholar 

  13. K.M. Johnson, J. Appl. Phys. 33, 2826–2831 (1962)

    Article  ADS  Google Scholar 

  14. C.E. Ciomaga, M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, J. Eur. Ceram. Soc. 27, 4061–4064 (2007)

    Article  Google Scholar 

  15. M.M. Vijatović Petrović, J.D. Bobić, T. Ramoška, J. Banys, B.D. Stojanović, Ceram. Int. 37, 2669–2677 (2011)

    Article  Google Scholar 

  16. M.E.V. Costa, P.Q. Mantas, J. Eur. Ceram. Soc. 19, 1077–1108 (1999)

    Article  Google Scholar 

  17. F. Shimanskij, M. Drofenik, D. Kolar, J. Mater. Sci. 29, 6301–6305 (1994)

    Article  ADS  Google Scholar 

  18. B. Huybrechth, K. Ishizaki, M. Takata, J. Mater. Sci. 30, 2463–2474 (1995)

    Article  ADS  Google Scholar 

  19. F.M. Tufescu, L. Curecheriu, A. Ianculescu, C.E. Ciomaga, L. Mitoseriu, J. Optoel, Adv. Mater. 10, 1894–1897 (2008)

    Google Scholar 

  20. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1(1), 65–71 (1997)

    Article  Google Scholar 

  21. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84(3), 531–538 (2001)

    Article  Google Scholar 

  22. F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84(2), 474–476 (2001)

    Article  Google Scholar 

  23. F.D. Morrison, D.C. Sinclair, A.R. West, Int. J. Inorg. Mater. 3, 1205–1210 (2001)

    Article  Google Scholar 

  24. K. Hamamoto, M. Kuwabara, Jpn. J. Appl. Phys. 40, 1163–1165 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Ministry of Education, Science and Technological Development of Republic of Serbia for the financial support of this work (Project III45021) and COST MP0904. The financial support of the Romanian CNCS-UEFISCDI Project No. PN–II-RU-TE-2012-3-0150 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Curecheriu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curecheriu, L., Vijatović Petrović, M.M., Bobić, J.D. et al. Nonlinear properties of antimony-doped BaTiO3 ceramics. Appl. Phys. A 119, 681–686 (2015). https://doi.org/10.1007/s00339-015-9013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9013-7

Keywords

Navigation