Skip to main content
Log in

Study of carrier mobility of tubular and planar graphdiyne

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphdiyne nanotubes were constructed 10 years after their theoretical prediction and many properties of them have remained unknown until now. In this investigation, transport properties of new family of carbon nanotubes, graphdiyne nanotubes, were studied systematically by using spin-polarized density functional theory coupled with Boltzmann transport equation with relaxation time approximation. We have predicted the charge mobility for tubular forms of graphdiyne (GDNT). The calculated intrinsic electron mobility for GDNT at room temperature can reach the order of 104 cm2 V−1 s−1. On the other hand, the hole mobility magnitude is about an order of 102 cm2 V−1 s−1. The DFT results also show that GDNT is direct band-gap semiconductor. The calculated cohesive and strain energies for GDNT indicate that this new nanomaterial is more stable than the conventional carbon nanotubes. Adsorption of a transition metal atom (Fe) on the external surface of GDNT has been studied by DFT method as well as density functional theory plus effective on-site Coulomb repulsion parameters U, Hubbard correction. Transition metal (TM)-adsorbed GDNT is magnetic and shows semimetal property. Charge transfer between TM adatom and GDNT as well as the electron redistribution of the TM intra-atomic s, p and d orbitals indicates that the TM-adsorbed single-walled γ-graphdiyne have a high potential for applications in spintronics and in future optoelectronics. The single-layer nanostructure of graphdiyne (pGD) is studied too. The resulted electronic properties of pGD and TM-absorbed-pGD confirm previous results for these nanostructures. Also, transport properties of stable TM-pGD nanostructure as well as TM-GDNT are notable. Energy gap values for both nanostructures are found to be strongly sensitive to the local Coulomb interactions U of the TM d orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87, 6687 (1987)

    Article  ADS  Google Scholar 

  2. M. Iyoda, J. Yamakawa, M.J. Rahman, Angew. Chem. Int. Ed. 50, 10522 (2011)

    Article  Google Scholar 

  3. X. Qian, Z. Ning, Y. Li, H. Liu, C. Ouyang, Q. Chen, Y. Li, Dalton Trans. 41, 730 (2012)

    Article  Google Scholar 

  4. S.W. Cranford, M.J. Buehler, Nanoscale 4, 4587 (2012)

    Article  ADS  Google Scholar 

  5. M.M. Haley, J.J. Pak, S.C. Brand, Top. Curr. Chem. 201, 81 (1999)

    Google Scholar 

  6. Z.-G. Shao, X.-S. Ye, L. Yang, C.-L. Wang, J. Appl. Phys. 114, 093712 (2013)

    Article  ADS  Google Scholar 

  7. H. Du, Z. Deng, Z. Lü, Y. Yin, L. Yu, H. Wu, Z. Chen, Y. Zou, Y. Wang, H. Liu, Y. Li, Synth. Met. 161, 2055 (2011)

    Article  Google Scholar 

  8. A.L. Ivanovskii, Prog. Solid State Chem. 41, 1 (2013)

    Article  Google Scholar 

  9. G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, Y. Li, J. Phys. Chem. C 115, 2611 (2011)

    Article  Google Scholar 

  10. M. Long, L. Tang, D. Wang, Y. Li, Z. Shuai, ACS Nano 5, 2593 (2012)

    Article  Google Scholar 

  11. J. He, P. Zhou, N. Jiao, S.Y. Ma, K.W. Zhang, R.Z. Wang, L.Z. Sun, Sci. Rep. 4, 4014 (2014)

    ADS  Google Scholar 

  12. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  13. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  15. V.R. Coluci, D.S. Galvão, R.H. Baughman, J. Chem. Phys. 121, 3228 (2004)

    Article  ADS  Google Scholar 

  16. N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 58, 11009 (1998)

    Article  ADS  Google Scholar 

  17. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  18. MATLAB and Statistics Toolbox Release (2012b) The MathWorks, Inc., Natick

  19. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  20. J. Kunstmann, A. Quandt, I. Boustani, Nanotechnology 18, 155703 (2007)

    Article  ADS  Google Scholar 

  21. Y. Mao, J. Yuan, J. Zhong, J. Phys. Condens. Matter 20, 115209 (2008)

    Article  ADS  Google Scholar 

  22. H. Valencia, A. Gil, G. Frapper, J. Phys. Chem. C 114, 14141 (2010)

    Article  Google Scholar 

  23. V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvão, R.H. Baughman, Phys. Rev. B 68, 035430 (2003)

    Article  ADS  Google Scholar 

  24. J. He, S.Y. Ma, P. Zhou, C.X. Zhang, C. He, L.Z. Sun, J. Phys. Chem. C 116, 26313 (2012)

    Article  Google Scholar 

  25. M.D. Towler, N.L. Allan, N.M. Harrison, V.R. Saunders, W.C. Mackrodt, E. Aprà, Phys. Rev. B 50, 5041 (1994)

    Article  ADS  Google Scholar 

  26. O. Bengone, M. Alouani, P. Blöchl, J. Hugel, Phys. Rev. B 62, 16392 (2000)

    Article  ADS  Google Scholar 

  27. K. Capelle, V.L. Campo Jr, Phys. Rep. 528, 91 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  29. M. Cococcioni, S. de Gironcoli, Phys. Rev. B 71, 035105 (2005)

    Article  ADS  Google Scholar 

  30. G. Fischer, M. Däne, A. Ernst, P. Bruno, M. Lüders, Z. Szotek, W. Temmerman, W. Hergert, Phys. Rev. B 80, 014408 (2009)

    Article  ADS  Google Scholar 

  31. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  32. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008)

    Article  Google Scholar 

  33. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W.A. de Heer, M. Potemski, Phys. Rev. Lett. 101, 267601 (2008)

    Article  ADS  Google Scholar 

  34. Z. Shuai, L. Wang, Q. Li, Adv. Mater. 23, 1145 (2011)

    Article  Google Scholar 

  35. H. Geng, Q. Peng, L. Wang, H. Li, Y. Liao, Z. Ma, Z. Shuai, Adv. Mater. 24, 3568 (2012)

    Article  Google Scholar 

  36. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008)

    Article  ADS  Google Scholar 

  37. C. Herring, E. Vogt, Phys. Rev. 105, 1933 (1957)

    Article  ADS  Google Scholar 

  38. B. Xu, Y.D. Xia, J. Yin, X.G. Wan, K. Jiang, A.D. Li, D. Wu, Z.G. Liu, Appl. Phys. Lett. 96, 183108 (2010)

    Article  ADS  Google Scholar 

  39. J. Xiao, M. Long, X. Li, H. Xu, H. Huang, Y. Gao, Sci. Rep. 4, 4327 (2014)

    ADS  Google Scholar 

  40. Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, J.L. Brédas, J. Chem. Phys. 118, 3764 (2003)

    Article  ADS  Google Scholar 

  41. L. Tang, M. Long, D. Wang, Z. Shuai, Sci. China Ser. B 52, 1646 (2009)

    Article  Google Scholar 

  42. L.M. Woods, G.D. Mahan, Phys. Rev. B 61, 10651 (2000)

    Article  ADS  Google Scholar 

  43. J. Chen, J. Xi, D. Wang, Z. Shuai, J. Phys. Chem. Lett. 4, 1443 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was enabled in part by support provided by WestGrid (www.westgrid.ca) and Compute Canada Calcul Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifollah Jalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, S., Houshmand, F. & Schofield, J. Study of carrier mobility of tubular and planar graphdiyne. Appl. Phys. A 119, 571–579 (2015). https://doi.org/10.1007/s00339-015-8992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-8992-8

Keywords

Navigation