Skip to main content
Log in

Experimental and numerical analysis of crack-free DPSS laser dicing of borosilicate glass

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate the possibility of the crack-free laser dicing of borosilicate glass. The effect of a polymer layer is analyzed on the laser (diode-pumped solid-state, 355 nm, nanosecond) dicing capability of a commercial glass (Borofloat®33) for backend packaging. The main drawbacks concerned the brittleness of glass and photothermal ablation which induces thermal stresses responsible for chipping or cracks. It was assumed that a thick enough polymer would enhance the energy coupling between the beam and the target. The effect of pulse energy and speed on the scribing depth is provided in the present article. A numerical simulation using COMSOL® Multiphysics was performed in order to analyze the volume temperature distribution. It revealed that the temperature remained higher than the working point of glass (1,500 K) between two pulses. The viscosity is thus low between two pulses, and thermal stresses are diminished compared to the processing of raw glass samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.K. Dubey, V. Yadava, J. Mater. Process. Technol. 195, 15–26 (2008)

    Article  Google Scholar 

  2. S. Nisar, L. Li, M.A. Sheikh, J. Laser Appl. 25, 042010 (2013)

    Article  ADS  Google Scholar 

  3. D. Ashkenasi, M. Schwagmeier, SPIE Conf. Proc. 6458, 64580F.1–64580F.8 (2007)

    Google Scholar 

  4. S. Nikumb et al., Thin Solid Films 477, 216–221 (2005)

    Article  ADS  Google Scholar 

  5. Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, N. Esashi, M. Fujita, Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation. in IEEE 21st International Conference on Micro Electro Mechanical Systems, MEMS 2008 (IEEE, Tucson, AZ, 2008), pp. 822–827

  6. J.-Y. Cheng et al., J. Micromech. Microeng. 16, 2420–2424 (2006)

    Article  ADS  Google Scholar 

  7. P. Lorenz, M. Ehrhardt, K. Zimmer, Appl. Surf. Sci. 258, 9138–9142 (2012)

    Article  ADS  Google Scholar 

  8. K. Sugioka et al., Appl. Phys. A 77, 251–257 (2003)

    ADS  Google Scholar 

  9. http://psec.uchicago.edu/glass/borofloat_33_e.pdf

  10. K. Cvecek et al., Phys. Procedia 5, 495–502 (2010)

    Article  ADS  Google Scholar 

  11. A. Salleo, T. Sands, F.Y. Génin, Appl. Phys. A 71, 601–608 (2000)

    Article  ADS  Google Scholar 

  12. G. Savriama, J. Mendez, L. Barreau, C. Boulmer-Leborgne, N. Semmar, J. Laser Appl. 25, 052010–052016 (2013)

    Article  ADS  Google Scholar 

  13. M.P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes and Systems, 4th edn. (Wiley, USA, 2010), p. 258

    Google Scholar 

  14. S.M. Eaton, H. Zhang, P.R. Herman, Opt. Express 13, 4708–4716 (2005)

    Article  ADS  Google Scholar 

  15. D.J. Garibotti, US Patent 3,112,850, 3 Dec 1963

  16. H. Fujishiro et al., Jpn. J. Appl. Phys. 36, 5633–5637 (1997)

    Article  ADS  Google Scholar 

  17. B.C. Stuart et al., Phys. Rev. B 53, 1749–1761 (1996)

    Article  ADS  Google Scholar 

  18. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)

    Article  ADS  Google Scholar 

  19. X. Liu et al., IEEE J. Quantum Electron. 33, 1706–1717 (1997)

    Article  ADS  Google Scholar 

  20. C.W. Ponader, J.F. Schroeder, A.M. Streltsov, J. Appl. Phys. 103, 063516-1–063516-5 (2008)

    Article  ADS  Google Scholar 

  21. L. Bessel et al., J. Non-Cryst. Solids 357, 2367–2640 (2011)

    Google Scholar 

  22. J.B. Lonzaga et al., J. Appl. Phys. 94, 4332–4340 (2003)

    Article  ADS  Google Scholar 

  23. G. Savriama, V. Jarry, L. Barreau, C. Boulmer-Leborgne, N. Semmar, Appl. Surf. Sci. 302, 163–168 (2014)

    Article  ADS  Google Scholar 

  24. P. Schaff, Laser processing of materials: Fundamentals, applications and development, (Springer series in materials science 139, 2011), pp. 32–33

  25. X. Liu, W. Yu, Res. J. Text. Apparel 10, 26–32 (2006)

    Google Scholar 

  26. X. Zhang, P.Z. Cong, M. Fujii, Int. J. Thermophys. 27, 880–895 (2006)

    Article  ADS  Google Scholar 

  27. J. Han et al., Appl. Surf. Sci. 256, 6649–6654 (2010)

    Article  ADS  Google Scholar 

  28. I. Miyamoto, K. Cvecek, M. Schmidt, Opt. Express 21, 14291–14302 (2013)

    Article  Google Scholar 

  29. D.M. Karnakis, M.R.H. Martyn, T. Kevin, M. Schlaf, H.V. Snelling, Proc. SPIE 5718, 216–227 (2005)

    ADS  Google Scholar 

  30. A.N. Samant, N.B. Dahotre, Int. J. Tools Manuf. 48, 1345–1353 (2008)

    Article  Google Scholar 

  31. S. Juodkazis, H. Misawa, I. Maksimovb, Appl. Phys. Lett. 85, 5239–5241 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge J. Mendéz for providing the glass samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Savriama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savriama, G., Semmar, N., Barreau, L. et al. Experimental and numerical analysis of crack-free DPSS laser dicing of borosilicate glass. Appl. Phys. A 119, 559–569 (2015). https://doi.org/10.1007/s00339-015-8991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-8991-9

Keywords

Navigation