Skip to main content

Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes


Agar-based electrolyte standing films with different salts and weak acids as ion and proton conductors were prepared and characterized by X-ray diffraction, UV–visible spectrophotometry, photoluminescence emission spectroscopy and electrochemical impedance spectroscopy. The salts used are lithium perchlorate (LiClO4) and potassium perchlorate (KClO4), while the weak acids used are acetic acid (CH3COOH) and lactic acid (C3H6O3). The values of the ion conductivity obtained for the agar-based polymer films are 6.54 × 10−8, 9.12 × 10−8, 3.53 × 10−8, 2.24 × 10−8 S/cm for the agar/acetic acid, agar/lactic acid, agar/LiClO4 and agar/KClO4 polymer films, respectively. As a function of temperature, the ion conductivity exhibits an Arrhenius behavior and the estimated activation energy is ≈0.1 eV for all the samples. The samples depicted high values of dielectric permittivity toward low frequencies which is due mostly to electrode polarization effect. The samples showed very high transparency (85–98 %) in the visible region, and this high transparency is one of the major requirements for application in electrochromic devices (ECD). The values of conductivity and activation energy obtained indicate that the electrolytes are good materials for application in ECD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


σ :


σ 0 :

Constant related to the conductivity at 0 K

E a :

Activation energy

K :

Boltzmann’s constant

T :


l :

Electrode separation

R b :

Bulk resistance

A :

Area between the electrolyte and electrode

C b :

Bulk capacitance

R 1 :

Blocking interface resistance

C PE :

Constant phase element

ɛ r :

Complex permittivity

\( \varepsilon^{{\prime }} \) :

Real part of dielectric constant

\( \varepsilon^{{\prime \prime }} \) :

Imaginary part of dielectric constant

ε 0 :

Permittivity of free space

C :

Capacitance value with the sample

C o :

Capacitance without the sample

ω :

Angular frequency

f :



Dye-sensitized solar cell


Electrochromic device

Tan δ :

Dissipation factor


  1. V.D. Noto, S. Lavina, G.A. Giffin, E. Negro, B. Scrosati, Electrochim. Acta 57, 4–13 (2011)

    Article  Google Scholar 

  2. R. Leones, F. Sentanin, L.C. Rodrigues, R.A.S. Ferreira, I.M. Marrucho, J.M.S.S. Esperança, A. Pawlicka, L.D. Carlos, M.M. Silva, Opt. Mater. 35(2), 187–195 (2012)

    Article  ADS  Google Scholar 

  3. M.M. Silva, P.C. Barbosa, L.C. Rodrigues, A. Gonçalves, C. Costa, E. Fortunato, Opt. Mater. 32(6), 719–722 (2010)

    Article  ADS  Google Scholar 

  4. E. Lima, E. Raphael, F. Sentanin, L.C. Rodrigues, R.A.S. Ferreira, L.D. Carlos, M.M. Silva, A. Pawlicka, Mater. Sci. Eng., B 177, 488–493 (2012)

    Article  Google Scholar 

  5. A. Pawlicka, A. Firmino, D. Vieira, F. Sentanin, J. G. Grote, F. Kajzar, in Proceeding of the SPIE 7487, Optical Materials in Defence Systems Technology VI, 74870J (September 24, 2009). doi:10.1117/12.835913

  6. S.S. Alias, A.A. Mohammed, Ionics 19, 1185–1194 (2013)

    Article  Google Scholar 

  7. V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, in Proceedings of the SPIE, vol. 7315, p. 731504-1

  8. I. Rau, J.G. Grote, F. Kajzar, A. Pawlicka, C. R. Phys. 13(8), 853–864 (2012)

    Article  ADS  Google Scholar 

  9. E. Cano, A. Crespo, D. Lafuente, B.R. Barat, Electrochem. Commun. 41, 16–19 (2014)

    Article  Google Scholar 

  10. A. Pawlicka, D.C. Dragunski, K.V. Guimaraes, Mol. Cryst. Liq. Cryst. 416, 105–112 (2004)

    Article  Google Scholar 

  11. P. Ramasamy, Ionics 18, 413–423 (2012)

    Article  Google Scholar 

  12. A. Rubler, K. Sakakibara, Cellulose 18, 937–944 (2011)

    Article  Google Scholar 

  13. R. Leones, F. Sentanin, L.C. Rodrigues, I.M. Marrucho, J.M.S.S. Esperança, A. Pawlicka, M.M. Silva, Express Polym. Lett. 6(12), 1007–10011 (2012)

    Article  Google Scholar 

  14. D.F. Viera, C.O. Avellanneda, Mol. Cryst. Liq. Cryst. 485, 95–104 (2008)

    Article  Google Scholar 

  15. D.R. Lu, C.M. Xiao, S.J. Xu, Express Polym. Lett. 3(6), 366 (2009)

    Article  Google Scholar 

  16. J. Jane, S. Lim, I. Paetau, K. Spence, S. Wang, ACS Symp. Ser. 575, 92 (1994)

    Article  Google Scholar 

  17. Y. He, H. Liu, Y. Chen, Y. Tian, Z. Deng, S.H. Ko, T. Ye, C. Mao, Microsc. Res. Tech. 70, 522 (2007)

    Article  Google Scholar 

  18. G.H. Meeten, P. Navard, Polymer 24(I7), 815–819 (1983)

    Article  Google Scholar 

  19. K. Nakane, T. Ogihara, N. Ogata, Y. Kurokawa, J. Mater. Res. 18, 672–676 (2003)

    Article  ADS  Google Scholar 

  20. M.A.S.A. Samir, F. Alloin, W. Gorecki, J.-Y. Sanchez, A. Dufresne, J. Phys. Chem. B 108, 10845–10852 (2004)

    Article  Google Scholar 

  21. M. Vasilopoulou, I. Raptis, P. Argitis, I. Aspiotis, D. Davazoglou, Microelectron. Eng. 83, 1414 (2006)

    Article  Google Scholar 

  22. C.O. Avellaneda, D.F. Vieira, A. Al-Kahlout, E.R. Leite, A. Pawlicka, M.A. Aegerter, Electrochim. Acta 53(4), 1648–1654 (2007)

    Article  Google Scholar 

  23. Jurling A., in Impedance Analysis and Breakdown Voltage of Dielectric Materials (2008). Accessed 11/3/14

  24. F.M. Gray, Solid Polymer Electrolytes: Fundamentals of Technological Applications (Wiley-VCH, London, 1991), pp. 83–93

    Google Scholar 

  25. S. Ramesh, C.-W. Liew, A. Arof, K. J. Non-Cryst. Solids 357(21), 3654–3660 (2011)

    Article  ADS  Google Scholar 

  26. R.A. Robinson, R.H. Stokes, Electrolyte Solutions (Butterworths, London, 1959)

    Google Scholar 

  27. Y. Wang, Sol. Energy Mater. Sol. Cells 93(8), 1167 (2009)

    Article  Google Scholar 

  28. E. Raphael, C.O. Avellaneda, B. Manzolli, A. Pawlicka, Electrochim. Acta 55(4), 1455–1459 (2010)

    Article  Google Scholar 

  29. D. Baril, C. Michot, M. Armand, Solid State Ion. 94, 35 (1997)

    Article  Google Scholar 

  30. R.F.M.S. Marcondes, P.S. D’Agostini, J. Ferreira, E.M. Girotto, A. Pawlicka, D.C. Dragunski, Solid State Ion. 181(13–14), 586–591 (2010)

    Article  Google Scholar 

  31. A. Pawlicka, F. Sentanin, A. Firmino, J.G. Grote, F. Kajzar, I. Rau, Synth. Met. 161(21–22), 2329–2334 (2011)

    Article  Google Scholar 

  32. X.T. Zhang, Y.C. Liu, J.Y. Zhang et al., J. Cryst. Growth 254(1–2), 80–85 (2003)

    Article  ADS  Google Scholar 

  33. A.M. Neagu, I.V. Ciuchi, L.P. Curecheriu, L. Mitoseriu, J. Adv. Res. Phys. 1(1), 011006 (2010)

    Google Scholar 

  34. T. Soboleva, Z. Xie, Z. Shi, E. Tsang, T. Navessin, S. Holdcroft, J. Electroanal. Chem. 622, 145–152 (2008)

    Article  Google Scholar 

  35. J.R. MacDonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Willey, New York, 1987)

    Google Scholar 

  36. A. Firmino, J.G. Grote, F. Kajzar, J.-C. M’Peko, A. Pawlicka, J. Appl. Phys. 110, 033704 (2011). doi:10.1063/1.3610951

    Article  ADS  Google Scholar 

  37. M. O’Rourke, N. Duffy, R. De Marco, I. Potter, Membranes 1, 132–148 (2011). doi:10.3390/membranes1020132

    Article  Google Scholar 

  38. Jurling A., in Impedance Analysis and Breakdown Voltage of Dielectric Materials (2008). Accessed 11/3/14

  39. N.A. Archana, N. Chand, Int. J. Eng. Sci. Technol. 4(2), 191–209 (2012)

    Google Scholar 

Download references


The authors thank the US Army Research Laboratory–Broad Agency Announcement (BAA) for their financial support under the Contract Number W911NF12-1-0588 and W911NF12-1-0597.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. C. Nwanya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nwanya, A.C., Amaechi, C.I., Udounwa, A.E. et al. Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes. Appl. Phys. A 119, 387–396 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Polymer Film
  • Polymer Electrolyte
  • Weak Acid
  • Proton Conductor
  • LiClO4