Skip to main content

Advertisement

Log in

Super growth of vertically aligned carbon nanotubes on pulsed laser deposited catalytic thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Efficient and reproducible growth of vertically aligned carbon nanotube (CNT) forests by catalytic chemical vapor deposition (CVD) requires precise setting of the properties of the catalyst thin films and CVD conditions. In this work, super growth of vertically aligned CNTs onto Al2O3 support and Fe–Co catalyst layer system is presented. The layers were grown by pulsed laser deposition (PLD) onto silicon wafer pieces. Their thickness and optical properties were controlled by spectroscopic ellipsometry. The effect of heat treatment at 750 °C in nitrogen and in hydrogen of these PLD layers was compared. High-resolution electron microscopic images showed that treatment of catalyst layers in H2 resulted in finer and denser catalytic particles. As a result, well-aligned, dense and few-walled CNT forests with 1–1.5 mm height were deposited by water-vapor-assisted CVD on the hydrogen-treated films, while without hydrogen treatment defected CNT structures were grown. According to these observations, Raman spectroscopy showed a higher degree of crystallinity in case of CNT-s, where reduction by hydrogen influenced the oxidation state of the metallic catalytic particles in a beneficial way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zou, R.A. Zhao, G. Wang, Science 274, 1701 (1996)

    Article  ADS  Google Scholar 

  2. S. Noda, K. Hasegawa, H. Sugime, K. Kakehi, Z.Y. Zhang, S. Maruyama, Y. Yamaguchi, Jpn. J. Appl. Phys. 46, L399 (2007)

    Article  ADS  Google Scholar 

  3. C. Mattevi, C.T. Wirth, S. Hofmann, R. Blume, M. Cantoro, C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schloegl, J. Robertson, J. Phys. Chem. C 112, 12207 (2008)

    Article  Google Scholar 

  4. S. Sakurai, H. Nishino, D.N. Futaba, S. Yasuda, T. Yamada, A. Maigne, Y. Matsuo, E. Nakamura, M. Yumura, K. Hata, J. Am. Chem. Soc. 134, 2148 (2012)

    Article  Google Scholar 

  5. J. Robertson, G.F. Zhong, C.S. Esconjauregui, B.C. Bayer, C. Zhang, M. Fouquet, S. Hofmann, Applications of carbon nanotubes grown by chemical vapor deposition. Jpn. J. Appl. Phys. 51(1), 01AH01 (2012)

    Article  Google Scholar 

  6. N. Halonen, K. Kordas, G. Toth, T. Mustonen, J. Maklin, J. Vahakangas, P.M. Ajayan, R. Vajtai, J. Phys. Chem. C 112, 6723 (2008)

    Article  Google Scholar 

  7. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362 (2004)

    Article  ADS  Google Scholar 

  8. T. Arcos, P. Oelhafen, D. Mathys, J. Phys. Chem B 108, 7728 (2004)

    Article  Google Scholar 

  9. D.P. Burt, M.W. Whyte, J.M.R. Weaver, A. Glidle, J.P. Edgeworth, J.V. Macpherson, P.S. Dobson, J. Phys. Chem. C 113, 15133 (2009)

    Article  Google Scholar 

  10. R.G. Lacerda, K.B.K. Teo, A.S. Teh, M.H. Yang, S.H. Dalal, D.A. Jefferson, J.H. Durrell, N.L. Rupesinghe, D. Roy, G.A.J. Amaratunga, W.I. Milne, F. Wyczisk, P. Legagneux, M. Chhowalla, J. Appl. Phys. 96, 4456 (2004)

    Article  ADS  Google Scholar 

  11. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)

    Article  ADS  Google Scholar 

  12. Y. Yao, L.K.L. Falk, R.E. Morjan, O.A. Nerushev, E.E.B. Campbell, J. Mat. Sci. Mat. Electron. 15, 533 (2004)

    Article  Google Scholar 

  13. G. Eres, A.A. Puretzky, D.B. Geohegan, H. Cui, Appl. Phys. Lett. 84, 1759 (2004)

    Article  ADS  Google Scholar 

  14. E. Teblum, Y. Gofer, C.L. Pint, G.D. Nessim, J. Phys. Chem. C 116, 24522 (2012)

    Article  Google Scholar 

  15. M. Dubosc, S. Casimirius, M.-P. Besland, C. Cardinaud, A. Granier, J.-L. Duvail, A. Gohier, T. Minea, V. Arnal, J. Microelectron. Eng. 84, 2501 (2007)

    Article  Google Scholar 

  16. D. Bäuerle, Laser Processing and Chemistry, 4th edn. (Springer, Berlin, 2011), pp. 489–531

    Book  Google Scholar 

  17. D.B. Chrisey, G.K. Hubler (eds.): Pulsed Laser Deposition of Thin Films. Wiley, New York, (1994) p. 23, p. 89

  18. H.U. Krebs, in Pulsed Laser Deposition of Thin Films, ed. by R. Eason (Wiley, New York, 2007), pp. 363–380

    Google Scholar 

  19. S. Neralla, S. Yarmolenko, J. Sankar, J.V. Shanov, Y.H. Yun and M.J. Schulz, Mater. Res. Soc. (Symposium Proceedings), 900, 433 (2005)

  20. M. Gaillard, E. Amin-Chalhoub, C. Boulmer-Leborgne, A. Petit, E. Millon, N. Semmar, AIP Conf. Proc. 1464, 179 (2012)

    Article  ADS  Google Scholar 

  21. T. Ižák, M. Veselý, T. Daniš, M. Marton, M. Michalka, M. Kadlečíková, J. Phys. Conf. Ser. 100(1), 072008 (2008)

    ADS  Google Scholar 

  22. A. Magrez, R. Smajda, J.W. Seo, E. Horvath, P.R. Ribič, J.C. Andresen, D. Acquaviva, A. Olariu, G. Laurenczy, L. Forró, ACS Nano 5, 3428 (2011)

    Article  Google Scholar 

  23. R. Smajda, J.C. Andresen, M. Duchamp, R. Meunier, S. Casimirius, K. Hernádi, L. Forró, A. Magrez, Phys. Status Solidi B 246, 2457 (2009)

    Article  ADS  Google Scholar 

  24. A. Magrez, J.W. Seo, R. Smajda, M. Mionic, L. Forró, Materials 3, 4871 (2010)

    Article  ADS  Google Scholar 

  25. D. De Sousa Meneses, M. Malki, P. Echegut, J. Non-Cryst. Solids 352, 769 (2006)

    Article  ADS  Google Scholar 

  26. P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974)

    Article  ADS  Google Scholar 

  27. T. Lichtenstein, Handbook of Thin Film Materials (College of Engineering and Applied Science, University of Rochester, Rochester, 1979)

    Google Scholar 

  28. J. Dijon, P.D. Szkutnik, A. Fournier, T. Goislard de Monsabert, H. Okuno, E. Quesnel, V. Muffato, E. De Vito, N. Bendiab, A. Bogner, N. Bernier, Carbon 48, 3953 (2010)

    Article  Google Scholar 

  29. D. Mata, R.M. Silva, A.J.S. Fernandes, F.J. Oliveira, P.M.F.J. Costa, R.F. Silva, Carbon 50, 3585–3606 (2012)

    Article  Google Scholar 

  30. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)

    Article  ADS  Google Scholar 

  31. E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, A.A. Martin, C. Verissimo, Carbon 44, 2202 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Switzerland through the Swiss Contribution (SH/7/2/20). The work of Z. Pápa was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hernadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fejes, D., Pápa, Z., Kecsenovity, E. et al. Super growth of vertically aligned carbon nanotubes on pulsed laser deposited catalytic thin films. Appl. Phys. A 118, 855–861 (2015). https://doi.org/10.1007/s00339-014-8965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8965-3

Keywords

Navigation