Skip to main content
Log in

Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the effect of the irradiation pulse number on the morphology of the near-wavelength ripples perpendicular to the laser polarization was investigated. The results show that the ripple spacing first fast decreases with the increased irradiation pulse number and finally reaches a stable value. The change of ripple morphology with different incidence angles was also studied. The ripples are found keeping always perpendicular to the laser polarization and have respective ripple spacings of 650, 480 and 390 nm upon the laser irradiation with pulse number N = 16 and fluence of 1.33 J/cm2 at the incidence angles of 0°, 30° and 60°. The change of the ripple spacing with different excitation levels was also studied. The theory for interference of the incident wave with the surface plasmon polariton wave (SPP) and the Sipe–Drude theory are both employed to analyze the experimental results. Detailed calculations show that the Sipe–Drude theory works better for explaining the main features of the ripples on silicon wafer surface. We suggest that the interaction of the incident wave with some form of surface electromagnetic wave except SPP is most possibly responsible for the ripple formation on silicon surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219 (2008)

    Article  ADS  Google Scholar 

  2. J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  3. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  4. T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. He, J. Zhang, H. Kuroda, Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys. Rev. B 72, 125429 (2005)

    Article  ADS  Google Scholar 

  5. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, K. Midorikawa, Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. Opt. Lett. 38, 187 (2013)

    Article  ADS  Google Scholar 

  6. Y. Kondo, T. Suzuki, H. Inouye, K. Miura, T. Mitsuyu, K. Hirao, Three-dimensional microscopic crystallization in photosensitive glass by femtosecond laser pulses at nonresonant wavelength. Jpn. J. Appl. Phys. 37, L94 (1998)

    Article  ADS  Google Scholar 

  7. K. Miura, J. Qiu, T. Mitsuyu, K. Hirao, Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt. Lett. 25, 408 (2000)

    Article  ADS  Google Scholar 

  8. K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, K. Hirao, Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions. Appl. Phys. Lett. 80, 2263–2265 (2002)

    Article  ADS  Google Scholar 

  9. A.Y. Vorobyev, C. Guo, Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 92, 041914 (2008)

    Article  ADS  Google Scholar 

  10. M. Birnbaum, Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO. J. Appl. Phys. 105, 034908 (2009)

    Article  ADS  Google Scholar 

  12. F. Liang, R. Vallée, S.L. Chin, Mechanism of nanograting formation on the surface of fused silica. Opt. Express 20, 4389 (2012)

    Article  ADS  Google Scholar 

  13. E.L. Gurevich, On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation. Appl. Surf. Sci. 278, 52 (2013)

    Article  ADS  Google Scholar 

  14. J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses. J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  15. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  16. Jörn Bonse, Jörg Krüger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108, 034903 (2010)

    Article  ADS  Google Scholar 

  17. T.J.-Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J. Appl. Phys. 114, 083104 (2013)

    Article  ADS  Google Scholar 

  18. K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron-hole plasmas in silicon. Phys. Rev. B 61, 2643 (2000)

    Article  ADS  Google Scholar 

  19. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  20. J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  21. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Femtosecond laser-induced periodic surface structures on silica. J. Appl. Phys. 112, 014901 (2012)

    Article  ADS  Google Scholar 

  22. C. Zhang, J. Yao, C. Li, Q. Dai, S. Lan, V.A. Trofimov, T.M. Lysak, Asymmetric femtosecond laser ablation of silicon surface governed by the evolution of surface nanostructures. Opt. Express 21, 4439 (2013)

    Article  ADS  Google Scholar 

  23. S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, J. Bonse, Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond, laser pulse irradiation sequences. Appl. Phys. A 110, 553 (2013)

    Article  ADS  Google Scholar 

  24. Y. Han, S. Qu, The ripples and nanoparticles on silicon irradiated by femtosecond laser. Chem. Phys. Lett. 495, 241–244 (2010)

    Article  ADS  Google Scholar 

  25. W. Han, L. Jiang, X. Li, P. Liu, L. Xu, Y. Lu, Continuous modulations of femtosecond laser induced periodic surface structures and scanned line-widths on silicon by polarization changes. Opt. Express 21, 15505 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the laser ablation experimental contributions from Junyi Ye. Thanks for the experimental conditions provided by the laboratory of ultrafast photonics of Shanghai University. Thanks for the AFM characterization help from Yan Jiang. Thanks for the financial support from the National Natural Science Foundation of China (Grant Nos. 61205128, 60908007, 11102075 and 51302111), the Research Foundation for Advanced Talents of Jiangsu University (No. 09JDG022) and Shanghai Municipal Natural Science Foundation (No. 13ZR1414800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Ye, J., Lin, X. et al. Discussion of the possible formation mechanism of near-wavelength ripples on silicon induced by femtosecond laser. Appl. Phys. A 118, 1119–1125 (2015). https://doi.org/10.1007/s00339-014-8926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8926-x

Keywords

Navigation