Numerical investigation of a D-shape optical fiber sensor containing graphene

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, the reflection properties and sensitivity of a D-shape optical fiber sensor containing graphene are investigated theoretically and numerically. Maxwell’s equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell’s law is applied, and the boundary conditions are imposed at each layer interface to calculate the reflected power and sensitivity of the sensor. In the numerical results, the mentioned power is computed and illustrated as a function of wavelength, angle of incidence, metal layer kind, and refractive index of the external medium when the graphene layer thickness changes. In addition, the variation of sensitivity with the wavelength of the incident radiations is also proposed in the presence and in the absence of the graphene layer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    W. Peng, Y. Liu, P. Fang, X. Liu, Z. Gong, H. Wang, and F. Cheng, Compact surface plasmon resonance imaging sensing system based on general optoelectronic components. Optic Expres. 22(5), 6174–6185 (2014)

  2. 2.

    J. Homols, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  Google Scholar 

  3. 3.

    A. Abbas, M.J. Linman, Q. Cheng, New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 26(5), 1815–1824 (2011)

    Article  Google Scholar 

  4. 4.

    A.D. Kersey, A review on recent developments in fiber optic sensor technology. Opt. Fiber Technol. 2(3), 291–317 (1996)

    ADS  Article  Google Scholar 

  5. 5.

    K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sens. Actuators A Phys. 82(1–3), 40–61 (2000)

    Article  Google Scholar 

  6. 6.

    B. Lee, Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9(2), 57 (2003)

    ADS  Article  Google Scholar 

  7. 7.

    M.F. Ubeid, M.M. Shabat, Analytical sensitivity and reflected power through a D-shape optical fiber sensor. Opto-Electron. Rev. 22(3), 191–195 (2014)

    Article  Google Scholar 

  8. 8.

    C. Fernández-Valdivielso, I.R. Matías, F.J. Arregui, J. Roca-Dorda, J.A. Vera, M. Jimenez, Thermochromic-effect-based temperature optical fiber sensor for underwater applications. Opt. Eng. 42(3), 656–661 (2003)

    ADS  Article  Google Scholar 

  9. 9.

    M.H. Chiu, S.F. Wang, R.S. Chang, D-type fiber biosensor based on surface plasmon resonance technology and heterodyne interferometry. Opt. Lett. 30, 233–235 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    M. Iga, A. Seki, K. Watanabe, Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens. Actuators B 101, 368–372 (2004)

    Article  Google Scholar 

  11. 11.

    D.F. Santos, A. Guerreiro, J.M. Baptista, Numerical investigation of a refractive index SPR D-type optical fiber sensor using COMOSOL multiphysics. Photonic Sen. 1(3), 61–66 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    B.D. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered structure plasmon resonance-based fiber optic sensor. Sens. Actuators B 107, 40–46 (2005)

    Article  Google Scholar 

  13. 13.

    W.B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, The effect of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sens. Actuators 84, 198–204 (2000)

    Article  Google Scholar 

  14. 14.

    A. Geim, Graphene status and prospects. Science 324(5934), 1530–1534 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    Michael Andronico, 5 ways Graphene will change Gadgets forever, Laptop (2014)

  16. 16.

    This month in physics history: October 22, 2004; Discovery of graphene APS News, Ser II. 18(9), 2 (2009)

  17. 17.

    C. Riedle, C. Coletti, T. Iwasoki, A.A. Zakharou, U. Starke, Quasi-Free standing experimental graphene on Sic obtained by hydrogen interaction. Phys. Rev. Lett. 103(24), 246804 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    D. Prezzi, D. Varsano, A. Ruini, A. Marini, E. Molinari, Optical properties of graphene nanoribbons: the role of many-body effects. Phys. Rev. B 77(4), 041404 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    X. Zhu, H. Su, Excitons of edge and surface functionalized graphene nanoribbons. J Phys. Chem. C 114(41), 17257–17262 (2010)

    Article  Google Scholar 

  20. 20.

    D. Blmatov, C.-Y. Mou, Josephson effect in graphene SNS junction with a single localized detect. Phys. B 405(13), 2896 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    The Nobel foundation, The Nobel prize in physics (2010). http://www.nobelprize.org. Retrieved 2013-12-03

  22. 22.

    Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors. Electroanalysis 22(10), 1027–1036 (2010)

    Article  Google Scholar 

  23. 23.

    D. Feng, G. Liu, M. Zhang, D. Jia, D-shaped fiber optic SPR biosensors based on a metal-graphene structure. Chin. Opt. Lett. 11(11), 110607 (2013)

    Article  Google Scholar 

  24. 24.

    L. Wu, H.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)

    ADS  Article  Google Scholar 

  25. 25.

    B. Song, D. Li, W.P. Qi, M. Elstner, C.H. Fan, H.P. Fang, Graphene on Au (111): a highly conductive material with excellent adsorption properties for high resolution bio/nanodetection and identification. Chem. Phys. Chem. 11(3), 585–589 (2010)

    Google Scholar 

  26. 26.

    P.K. Maharana, T. Srivastava, R. Jha, Ultrasensitive plasmonic imaging sensor based on graphene and silicon. Photonic Technol. Lett. IEEE 25(2), 122–125 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.B. Xu, High-responsivity graphene/silicon-heterostructure waveguide photodetector. Nat. Photonics 7, 888–891 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    S.F. Wang, M.H. Chiu, J.C. Hu, R.S. Chang, F.T. Wang, Theoretical analysis and experimental evaluation of D-type optical fiber sensor with a thin gold film. Opt. Commun. 253, 283–289 (2005)

    ADS  Article  Google Scholar 

  29. 29.

    R.A. Shelby, Microwave experiments with left-handed materials, Chap. 3, Ph.D. thesis, University of California, San Diego (Bell and Howell Information and Learning Company, 2001) pp. 29–31

  30. 30.

    J.A. Kong, Theory of Electromagnetic waves. (EMW Publishing, Cambridge, 2005)

  31. 31.

    M.F. Ubeid, M.M. Shabat, M.O. Sid-Ahmed, Effect of negative permittivity and permeability on the transmission of electromagnetic waves through a structure containing left-handed material. Nat. Sci. 3(4), 328–333 (2011)

    Google Scholar 

  32. 32.

    M. F. Ubeid, M. M. Shabat and M. O. Sid-Ahmed, Numerical study of negative-refractive index ferrite waveguide. J. Nano-Electron. Phys. 4(1), 01009-1–01009-4 (2012)

  33. 33.

    C. Caloz, T. Itoh, Electromagnetic Metamaterials (Wiley, New Jersey, 2006)

    Google Scholar 

  34. 34.

    M.H. Chiu, C.H. Shih, M.H. Chi, Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sens. Actuators B 123, 1120–1124 (2007)

    Article  Google Scholar 

  35. 35.

    M.H. Chiu, C.H. Shih, Searching for optimal sensitivity of single-mode D-type optical fiber sensor in the phase measurement. Sens. Actuators B 131, 596–601 (2008)

    Article  Google Scholar 

  36. 36.

    M. Bruna, S. Borini, Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 94, 031901 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    N.K. Sharma, Performance of different metals in optical fiber-based plasmon resonance sensor. Pramana J Phys. 78(3), 417–427 (2011)

    ADS  Article  Google Scholar 

  38. 38.

    A.K. Sharma, B.D. Gupta, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101(9), 093111-1-093111-6 (2007)

    ADS  Google Scholar 

  39. 39.

    O.V. Buton, K.M. Golant, A.L. Tomashuk, M.J.N. Van Stralen, Refractive index dispersion of doped silica for fiber optics. Opt. Commun. 213, 301–308 (2002)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muin F. Ubeid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ubeid, M.F., Shabat, M.M. Numerical investigation of a D-shape optical fiber sensor containing graphene. Appl. Phys. A 118, 1113–1118 (2015). https://doi.org/10.1007/s00339-014-8925-y

Download citation

Keywords

  • Surface Plasmon Resonance
  • Graphene Layer
  • Graphene Film
  • Surface Plasmon Resonance Sensor
  • Surface Plasmon Resonance Biosensor