Skip to main content

Advertisement

Log in

An ‘H’-shape three-dimensional meta-material used in honeycomb structure absorbing material

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An ‘H’-shape three-dimensional meta-material structure which loaded on the sidewall of honeycomb structure absorbing material was designed and fabricated in this project. The simulation results demonstrated a super-wide absorption band below −10 dB between 2.3 and 18 GHz, which expanded 7 GHz compared with the absorber without meta-material. The relative impedance curve was analyzed, which showed that the meta-material has little impact on the impedance-matching characteristics of the honeycomb structure absorbing material. We further studied the distribution of both electronic field energy and magnetic field energy. The former one indicated that the low-frequency absorption peaks could easily be moved by adjusting the parameters of the parallel-plate capacitors which generate electric resonance, and the latter one illustrated that the three-dimensional meta-material could generate magnetic resonance between units which would not exist in two-dimensional meta-material. Then we verified the simulation results through experiment which display a similar absorbing curve. The differences between simulation results and experiment results were caused by the addition substrate of the meta-material, which could not be eliminated in this experiment. However, it still implied that we can obtain a meta-material absorber that has a super-wide absorbing band if we can put the meta-material on the sidewall of the honeycomb without attachments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  2. H. Tao et al., Phys. Rev. B 78, 241103 (2008)

    Article  ADS  Google Scholar 

  3. V.V. Varadan, in Region 5 Technical Conference IEEE, 4380361 (2007)

  4. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Phys. Rev. B 79, 125104 (2008)

    Article  ADS  Google Scholar 

  5. Y.Z. Cheng, H.L. Yang, Z.Z. Cheng, L. Wu, Appl. Phys. A Mater. 102, 1 (2011)

    Article  MATH  Google Scholar 

  6. J.-F. Zhou, H.-T. Chen, T. Koschny, A.K. Azad, A.J. Taylor, C.M. Soukoulis, J.F. O’Hara, Phys. Rev. B (2011). arXiv:1111.034

  7. J. McVay, N. Engheta, A. Hoorfar, IEEE Microw. Wirel. Compon. Lett. 14, 130 (2004)

    Article  Google Scholar 

  8. J. McVay, A. Hoorfar, N. Engheta, Antennas Propag. Soc. Int. Symp. 2A, 22 (2005)

    Google Scholar 

  9. A. Noor, Z. Hu, Electron. Lett. 45, 130 (2009)

    Article  Google Scholar 

  10. P.V. Tuong, J.W. Park, V.D. Lam, K.W. Kim, H. Cheong, W.H. Jang, Y.P. Lee, Comput. Mater. Sci. 61, 243 (2012)

    Article  Google Scholar 

  11. A. Noor, Z. Hu, Microwave Conference APMC 2009 Asia Pacific (IEEE, Singapore, 2009), p. 602

    Book  Google Scholar 

  12. Y.Q. Pang, H.F. Cheng, Y.J. Zhou, J. Wang, J. Appl. Phys. 113, 114902 (2013)

    Article  ADS  Google Scholar 

  13. M.-H. Li, H.-L. Yang, X.W. Hou, Y. Tian, D.-Y. Hou, Prog. Electromagn. Res. 108, 37 (2010)

    Article  Google Scholar 

  14. H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D Appl. Phys. 43, 225102 (2010)

    Article  ADS  Google Scholar 

  15. H. Luo, T. Wang, R.Z. Gong, Y. Nie, X. Wang, Chin. Phys. Lett. 28, 034204 (2011)

    Article  ADS  Google Scholar 

  16. J.B. Sun, L.Y. Liu, G.Y. Dong, J. Zhou, Opt. Express 19, 21155 (2011)

    Article  ADS  Google Scholar 

  17. C. Gu, S.B. Qu, Z.B. Pei, H. Ma, Z. Xu, P. Bai, W.-D. Peng, B.-Q. Lin, Chin. Phys. Lett. 28, 067801 (2011)

    Article  ADS  Google Scholar 

  18. H.B. Zhang, L.W. Deng, P.H. Zhou, L. Zhang, D.M. Cheng, J. Appl. Phys. 113, 013903 (2013)

    Article  ADS  Google Scholar 

  19. Z.Q. Liao, R.Z. Gong, Y. Nie, T. Wang, X. Wang, Photonic Nanostruct. 9, 287 (2011)

    Article  ADS  Google Scholar 

  20. H. Wakatsuchi, J. Paul, IEEE Trans. Antennas Propag. 60, 3670 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. Yanbing Ma, Huaiwu Zhang, Yuanxun Li, Yicheng Wang, J. Opt. Soc. Am. B 31, 325 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This Project was supported by the National Defense Pre-research Foundation of China under Grant No. 9140A10030110HK5105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Kang, F., Zhou, Z. et al. An ‘H’-shape three-dimensional meta-material used in honeycomb structure absorbing material. Appl. Phys. A 118, 1099–1106 (2015). https://doi.org/10.1007/s00339-014-8922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8922-1

Keywords

Navigation