Skip to main content
Log in

Metal/InGaN Schottky junction solar cells: an analytical approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The photovoltaic behaviour of metal/n-InGaN Schottky junction solar cells with low- and high-level injection conditions are explored by using voltage model. Four metals Ni–Au, Ni, Au and Pt are used as Schottky contact with n-InGaN and Schottky junction solar cell studied for open-circuit voltage (V oc) and short circuit current density (J sc) with a variation of Indium composition in n-InGaN. The cut-off value of Indium composition in n-InGaN is 36, 42, 55 and 70 % for Ni–Au, Ni, Au and Pt, respectively. The effects of doping density and surface recombination velocity on V oc and J sc are also explored. Model predict increment in V oc and J sc under high-level injection condition as compared to low-level injection condition with ϕ = 2 × 1017 cm−2 s−1 photon flux. The metal, Pt, is found to be a better choice in terms of making Schottky junction with n-InGaN. The concentration of donor atoms in n-InGaN plays an important role in both types of injection. The donor concentration should preferably be kept higher (>1016 cm−3) to get higher V oc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Willey, New York, 1981)

    Google Scholar 

  2. P. Mahala, S.K. Behura, A. Ray, Analytical Estimate of open-circuit voltage of a Schottky-barrier solar cell under high level injection. J. Nano Electron. Phys. 3, 979 (2011)

    Google Scholar 

  3. Y.K. Su, Y.Z. Chiou, F.S. Juang, S.J. Chang, J.K. Sheu, GaN and InGaN metal semiconductor-metal photo detectors with different Schottky contact metals. Jpn. J. Appl. Phys. 40, 2996 (2001)

    Article  ADS  Google Scholar 

  4. Y.J. Lin, Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current–voltage measurements. Appl. Phys. Lett. 86, 122109 (2005)

    Article  ADS  Google Scholar 

  5. J.S. Jang, D. Kim, T.Y. Seong, Schottky barrier characteristics of Pt contacts to n-type InGaN. J. Appl. Phys. 99, 073704 (2006)

    Article  ADS  Google Scholar 

  6. X. Sun, W.B. Liu, D.S. Jiang, Z.S. Liu, S. Zhang, L.L. Wang, H. Wang, J.J. Zhu, L.H. Duan, Y.T. Wang, D.G. Zhao, S.M. Zhang, H. Yang, Photoelectric characteristics of metal/InGaN/GaN heterojunction structure. J. Phys. D Appl. Phys. 41, 165108 (2008)

    Article  ADS  Google Scholar 

  7. H. Hasegawa, M. Akazawa, Current transport, fermi level pinning, and transient behaviour of group-III nitride Schottky barriers. J. Korean Phys. Soc. 55, 3 (2009)

    Google Scholar 

  8. X.J. Jun, C.D. Jun, L. Bin, X.Z. Li, J.R. Lian, Z. Rong, Z.Y. Dou, Au/Pt/InGaN/GaN heterostructure schottky prototype solar cell. Chin. Phys. Lett. 26, 098102 (2009)

    Article  ADS  Google Scholar 

  9. D.J. Chen, Y. Huang, B. Liu, Z.L. Xie, R. Zhang, High-Quality Schottky contacts to n-InGaN alloys prepared for photovoltaic devices. J. Appl. Phys. 105, 063714 (2009)

    Article  ADS  Google Scholar 

  10. H. Durmus, U. Atav, Extraction of voltage-dependent series resistance from I–V characteristics of Schottky diodes. Appl. Phys. Lett. 99, 093505 (2011)

    Article  ADS  Google Scholar 

  11. N. Matsuki, Y. Irokawa, Y. Nakano, M. Sumiya, π-Conjugated polymer/GaN Schottky solar cells. Sol. Energy Mater. Sol. Cells 95, 284 (2011)

    Article  Google Scholar 

  12. C. Kenney, K.C. Saraswat, B. Taylor, P. Majhi, Thermionic field emission explanation for nonlinear Richardson plots. IEEE Trans. Electron Devices 58, 8 (2011)

    Article  Google Scholar 

  13. P. Mahala, S.K. Behura, A. Ray, C. Dhanavantri, O. Jani, Effect of Indium Concentration on metal/n-InGaN Schottky Junction Solar Cell Under Low-Level Injection (ICAER, IIT Bombay, India, 2011)

    Google Scholar 

  14. L. Sang, M. Liao, Y. Koide, M. Sumiya, High-performance metal-semiconductor-metal InGaN photodetectors using CaF2. Appl. Phys. Lett. 98, 103502 (2011)

    Article  ADS  Google Scholar 

  15. S. Lin, B.P. Zhang, S.W. Zeng, X.M. Cai, J.Y. Zhang, S.X. Wu, A.K. Ling, G.E. Weng, Preparation and properties of Ni/InGaN/GaN Schottky barrier photovoltaic cells. Solid State Electron. 63, 105 (2011)

    Article  ADS  Google Scholar 

  16. E. Gür, Z. Zhang, S. Krishnamoorthy, S. Rajan, S.A. Ringel, Detailed characterization of deep level defects in InGaN Schottky diodes by optical and thermal deep level spectroscopies. Appl. Phys. Lett. 99, 092109 (2011)

    Article  ADS  Google Scholar 

  17. P. Mahala, S.K. Behura, A. Ray, C. Dhanavantri, O. Jani, The Effect of Indium composition on open-circuit voltage of InGaN thin-film solar cell: an analytical and computer simulation study. AIP Conf. Proc. 1451, 85 (2012)

    ADS  Google Scholar 

  18. W. Lu, T. Nishimura, L. Wang, T. Nakamura, P.K.L. Yu, P.M. Asbeck, Effects of surface micromesas on reverse leakage current in InGaN/GaN Schottky barriers. J. Appl. Phys. 112, 044505 (2012)

    Article  ADS  Google Scholar 

  19. E. Arslan, H. Çakmak, E. Özbay, Forward tunneling current in Pt/p-InGaN and Pt/n-InGaN Schottky barriers in a wide temperature range. Microelectron. Eng. 100, 51 (2012)

    Article  Google Scholar 

  20. V.R. Reddy, R. Padma, M. Siva, P. Reddy C.J. Choi, Annealing effects on electrical, structural, and surface morphological properties of Ir/n-InGaN Schottky structures. Phys. Status Solidi A. 209, 2027–2033 (2012)

  21. V.R. Reddy, B.P. Lakshmi, R. Padma, Electrical properties of rapidly annealed Ir and Ir/Au Schottky contacts on n-Type InGaN. J. Metallurgy 2012, 531915 (2012)

    Article  Google Scholar 

  22. D. Donoval, A. Chvála, R. Šramatý, J. Kováč, J.-F. Carlin, N. Grandjean, G. Pozzovivo, J. Kuzmík, D. Pogany, G. Strasser, P. Kordoš, Current transport and barrier height evaluation in Ni/InAlN/GaN Schottky diodes. Appl. Phys. Lett. 96, 223501 (2010)

    Article  ADS  Google Scholar 

  23. P.K. Dubey, V.V. Paranjape, Open-circuit voltage of a Schottky-barrier solar cell. J. Appl. Phys. 48, 324 (1997)

    Article  ADS  Google Scholar 

  24. K.F. Brennan, The Physics of Semiconductors with Application to Optoelectronics Devices (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  25. N. Miura, T. Nanjo, M. Suita, Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal. Solid State Electron. 48, 689 (2004)

    Article  ADS  Google Scholar 

  26. H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729 (1977)

    Article  ADS  Google Scholar 

  27. N.F. Mott, Conduction in Non-Crystalline Materials (Clarendon, Oxford, 1987)

    Google Scholar 

  28. N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990)

    Google Scholar 

  29. L. Gautero, M. Hollman, J. Rentsch, B. Bitnar , J.M. Sallese, R. Preu, All Screen Printed 120 microns Thin Large Area Silicon Solar Cells Applying Dielectric Rear Passivation and Laser Fired Contacts Reaching 18% Efficiency, 24th European PV Solar Energy Conference and Exhibition, 21–25 September, Hamburg, Germany (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramila Mahala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahala, P., Behura, S.K., Dhanavantri, C. et al. Metal/InGaN Schottky junction solar cells: an analytical approach. Appl. Phys. A 118, 1459–1468 (2015). https://doi.org/10.1007/s00339-014-8910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8910-5

Keywords

Navigation