Skip to main content
Log in

The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanofluid, a new class of solid/liquid mixtures, provided theoretical challenges because the measured effective thermal conductivity containing a few loadings of nanoparticle (<5 vol%) showed greater enhancement than traditional models predicted. The solid-like nanolayer around the nanoparticle acts as a thermal bridge between the particle and the base fluid, so is a key mechanism to enhance heat transfer of nanofluid. Based on the two-dimension Fourier’s law in the cylindrical coordinates, we deduced an expression for calculating the effective thermal conductivity of carbon nanotube-based nanofluid considering the interfacial nanolayer, as well as an empirical shape factor. The theoretical predictions on the enhanced thermal conductivity agree quite well with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

T :

Temperature

k :

Thermal conductivity

r :

Radial distance from the center of the nanoparticle

t :

Interfacial nanolayer thickness

q :

Heat flux

e(u):

Eccentricity of an ellipsoidal particle

k c11 :

Transverse equivalent thermal conductivity of the CNT

k c33 :

Longitudinal equivalent thermal conductivity of the CNT

M k :

Kaptiza radius

R k :

CNT-liquid interface thermal resistance

n :

Empirical shape factor

Ψ :

Sphericity

g :

Empirical parameter

E :

Field intensity

a, b, c :

Semi-axes of an ellipsoidal particle

x, y, z :

x-axis, y-axis, and z-axis

nf:

Nanofluid

bf:

Base fluid

p:

Nanoparticle

pe:

Equivalent nanoparticle

e:

Equivalent particle volume fraction

l:

Interfacial nanolayer

α :

Ratio of the thermal conductivities of the base fluid to the nanoparticle (k bf/k p)

β :

Ratio of the interfacial nanolayer thickness to the nanoparticle radius (t/b)

φ :

Nanoparticle volume fraction

θ :

Azimuthal angle

References

  1. A.S. Ahuja, Augmentation of heat transport in laminar-flow of polystyrene suspensions. 1. Experiments and results. J. Appl. Phys. 46, 3408–3416 (1975)

    Article  ADS  Google Scholar 

  2. X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J. Appl. Phys. 100, 044325 (2006)

    Article  ADS  Google Scholar 

  3. Y. Yang, A. Oztekin, S. Neti, S. Mohapatra, Particle agglometration and properties of nanofluids. J. Nanoparticle Res. 852, 1–10 (2012)

    Google Scholar 

  4. H. Jiang, H. Li, C. Zan, F. Wang, Q. Yang, L. Shi, Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim. Acta 579, 27–30 (2014)

    Article  Google Scholar 

  5. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Development and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol.66, ed. by D.A. Siginer, H.P. Wang (ASME, New York, 1995), pp. 99–105

    Google Scholar 

  6. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  7. S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000)

    Article  ADS  Google Scholar 

  8. J. Che, T. Cagin, W.A. Goddard, Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65–69 (2000)

    Article  ADS  Google Scholar 

  9. H. Xie, A. Cai, X. Wang, Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys. Lett. A 369, 120–123 (2007)

    Article  ADS  Google Scholar 

  10. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspension. Appl. Phys. Lett. 79, 2252–2254 (2001)

    Article  ADS  Google Scholar 

  11. M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water. Int. J. Thermophys. 25, 971–985 (2004)

    Article  ADS  Google Scholar 

  12. A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, A. Amrollahi, R. Khodafarin, Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp. Therm. Fluid Sci. 35, 717–723 (2011)

    Article  Google Scholar 

  13. M.S. Liu, M.C.C. Lin, C.C. Wang, Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res. Lett. 6, 297 (2011)

    Article  ADS  Google Scholar 

  14. A. Indhuja, K.S. Suganthi, S. Manikandan, K.S. Rajan, Viscosity and thermal conductivity of dispersions of gum Arabic capped MWCNT in water: influence of MWCNT concentration and temperature. J. Taiwan Inst. Chem. E 44, 474–479 (2013)

    Article  Google Scholar 

  15. S. Halelfadl, T. Mare, P. Estellé, Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 53, 104–110 (2014)

    Article  Google Scholar 

  16. S. Halelfadl, A.M. Adham, N. Mohd-Ghazali, T. Maré, P. Estellé, R. Ahmad, Optimization of thermal performances and pressure drop of a rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. Appl. Therm. Eng. 62, 492–499 (2014)

    Article  Google Scholar 

  17. P. Estellé, S. Halelfadl, T. Maré, Lignin as dispersant for water-based carbon nanotube nanofluids: impact on viscosity and thermal conductivity. Int. Commun. Heat Mass Transf 57, 8–12 (2014)

    Article  Google Scholar 

  18. S.M.S. Murshed, C.A. Nieto de Castro, Superior thermal features of carbon nanotubes-based nanofluids—a review. Renew. Sustain. Energy Rev. 37, 155–167 (2014)

    Article  Google Scholar 

  19. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)

    Article  MATH  Google Scholar 

  20. H.B. Kang, Y.W. Zhang, M. Yang, Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions. Appl. Phys. A, Mater. Sci. Process. 103, 1001–1008 (2011)

    Article  ADS  Google Scholar 

  21. J.J. Wang, R.T. Zhang, J.W. Gao, G. Chen, Heat conduction mechanisms in nanofluids and suspensions. Nano Today 7, 124–136 (2012)

    Article  Google Scholar 

  22. J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed edn., vol. 1 (Clarendon, Oxford, UK, 1881), p. 435

    Google Scholar 

  23. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    Article  Google Scholar 

  24. R.H. Davis, Thermal conductivity of mixture with spherical inclusions. Int. J. Thermophys. 7, 609–620 (1986)

    Article  ADS  Google Scholar 

  25. S. Lu, H. Lin, Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. J. Appl. Phys. 79, 6761–6769 (1996)

    Article  ADS  Google Scholar 

  26. S.P. Jang, S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Article  ADS  Google Scholar 

  27. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J. Nanoparticle Res. 6, 355–361 (2004)

    Article  Google Scholar 

  28. H. Xie, M. Fujii, X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 48, 2926–2932 (2005)

    Article  MATH  Google Scholar 

  29. H.R. Imbesat, J. Ayush, K.G. Subrata, P.S. Mukherjee, Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf. 49, 595–600 (2013)

    Article  Google Scholar 

  30. H. Jiang, H. Li, Q. Xu, L. Shi, Effective thermal conductivity of nanofluids considering interfacial nano-shells. Mater. Chem. Phys. 148, 195–200 (2014)

    Article  Google Scholar 

  31. B. Lamas, B. Abreu, A. Fonseca, N. Martins, M. Oliveira, Critical analysis of the thermal conductivity models for CNT based nanofluids. Int. J. Therm. Sci. 78, 65–76 (2014)

    Article  Google Scholar 

  32. C.Y. Tso, S.C. Fu, C.Y.H. Chao, A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int J Heat Mass Transf. 70, 202–214 (2014)

    Article  Google Scholar 

  33. J.R. Henderson, F.V. Swol, On the interface between fluid and the planner wall: theory and simulations of a hard sphere fluid at a hard wall. Mol. Phys. 51, 991–1010 (1984)

    Article  ADS  Google Scholar 

  34. C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, P. Dutta, Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Phys. B 283, 27–31 (2000)

    Article  ADS  Google Scholar 

  35. E. Yamada, T. Ota, Effective thermal conductivity of dispersed materials. Heat Mass Transf. 13, 27–37 (1980)

    Google Scholar 

  36. C.W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, 3549–3551 (2004)

    Article  ADS  Google Scholar 

  37. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)

    Article  ADS  Google Scholar 

  38. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731–734 (2003)

    Article  ADS  Google Scholar 

  39. Q.Z. Xue, Model for thermal conductivity of carbon nanotube-based composites. Phys. B Condens. Matter. 368, 302–307 (2005)

    Article  ADS  Google Scholar 

  40. C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, P. Dutta, Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys. Rev. Lett. 82, 2326–2329 (1999)

    Article  ADS  Google Scholar 

  41. B.X. Wang, L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf. 46, 2665–2672 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Doctoral Fund of the Ministry of Education of China (No. 20110002110088) and the Science Fund for Creative Research Groups (No. 51321002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Xu, Q., Huang, C. et al. The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids. Appl. Phys. A 118, 197–205 (2015). https://doi.org/10.1007/s00339-014-8902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8902-5

Keywords

Navigation