Skip to main content

Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers

Abstract

This work reports the fabrication and properties of carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers by using electrospinning technique followed by carbonization process under mixed air and argon atmosphere. The as-prepared samples were characterized by means of thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray absorption spectroscopy, and vibrating sample magnetometry. It was found that the structure of CoFe2O4 was cubic spinel with the variation of crystallite size between 22 and 54 nm depending on the magnetic source content. X-ray absorption near-edge spectra at the Fe (7,112 eV) and Co (7,709 eV) absorption K-edge were used to confirm the Fe3+ and Co2+ oxidation states of CoFe2O4 nanoparticles. The X-ray absorption fine structure analysis indicated that CoFe2O4 nanoparticles had a structure analogous to bulk-inverted spinel structure. All composite nanofibers exhibited ferromagnetic behavior related to the distribution of cations over tetrahedral and octahedral sites, whereas diamagnetic behavior was observed in pure carbon nanofibers. The magnetization was clearly enhanced with respect to the increase of magnetic source content, whereas the coercivity and the squareness (M r/M s) were dependent of crystallite size.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    B.H. Kim, N.N. Bui, K.S. Yang, M.E. Cruz, P. Ferraris, Bull. Korean Chem. Soc. 30, 1967 (2009)

    Article  Google Scholar 

  2. 2.

    V. Barranco, M.A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibaez, F. Agullo-Rueda, J.M. Amarilla, J.M. Rojo, J. Phys. Chem. C 114, 10302 (2010)

    Article  Google Scholar 

  3. 3.

    C. Lekakou, O. Moudam, F. Markoulidis, T. Andrews, J.F. Watts, G.T. Reed, J. Nanotechnol. 2011 (2011)

  4. 4.

    H. Niu, J. Zhang, Z. Xie, X. Wang, T. Lin, Carbon 49, 2380 (2011)

    Article  Google Scholar 

  5. 5.

    D. Shia, P. He, J. Lian, X. Chaud, S.L. Bud’ko, E. Beaugnon, L.M. Wang, R.C. Ewing, R. Tournier, J. Appl. Phys. 97, 064312 (2005)

    Article  ADS  Google Scholar 

  6. 6.

    W. Yao, J. Yang, J. Wang, L. Tao, Electrochim. Acta 53, 7326 (2008)

    Article  Google Scholar 

  7. 7.

    L. Wang, Y. Yu, P.C. Chen, C.H. Chen, Scr. Mater. 58, 405 (2008)

    Article  Google Scholar 

  8. 8.

    C. Kim, S.H. Park, W.J. Lee, K.S. Yang, Electrochim. Acta 50, 877 (2004)

    Article  Google Scholar 

  9. 9.

    A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, S. Majetich, IEEE Trans. Magn. 36(5), 3029 (2000)

    Article  ADS  Google Scholar 

  10. 10.

    T. Ren, Y. Si, J. Yang, B. Ding, X. Yang, F. Hong, J. Yu, J. Mater. Chem. 22, 15919 (2012)

    Article  Google Scholar 

  11. 11.

    M. Wojcik, J. Chmist, J. Przewoznik, H. Figiel, S. Blazewicz, Carbon 50, I604 (2012)

    Article  Google Scholar 

  12. 12.

    L.J. Zhao, H.J. Zhang, Y. Xing, S.Y. Song, S.Y. Yu, W.D. Shi, X.M. Guo, J.H. Yang, Y.Q. Lei, F. Cao, J. Solid State Electrochem. 181, 245 (2008)

    Article  ADS  Google Scholar 

  13. 13.

    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G.X. Li, J. Am. Chem. Soc. 126, 273 (2004)

    Article  Google Scholar 

  14. 14.

    J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Electrochim. Acta 55, 6973 (2010)

    Article  Google Scholar 

  15. 15.

    W. Jiang, Y. Liu, F. Li, J. Chu, K. Chen, Mater. Sci. Eng. B 166, 132 (2010)

    Article  Google Scholar 

  16. 16.

    F.R. Lamastra, F. Nanni, L. Camilli, R. Matassa, M. Carbone, G. Gusmano, Chem. Eng. J. 162, 430 (2010)

    Article  Google Scholar 

  17. 17.

    S.Y. Gu, O.L. Wu, J. Ren, New Carbon Mater. 23(2), 171 (2008)

    Article  Google Scholar 

  18. 18.

    S. Maensiri, W. Nuansing, Mater. Chem. Phys. 99, 104 (2006)

    Article  Google Scholar 

  19. 19.

    T.K. Ko, Appl. Polym. Sci. 42(7), 1949 (1991)

    Article  Google Scholar 

  20. 20.

    L.I.B. David, A.F. Ismail, J. Membr. Sci. 213(1–2), 285 (2002)

    Google Scholar 

  21. 21.

    S. Yang, Z. Guo, G. Sheng, X. Wang, Carbohydr. Polym. 90, 1100 (2012)

    Article  Google Scholar 

  22. 22.

    H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn (Wiley, New York, 1974)

  23. 23.

    H. Fukui, H. Ohsuka, T. Hino, K. Kanamura, ACS Appl. Mater. Interface 2, 998 (2010)

    Article  Google Scholar 

  24. 24.

    M.I. Mendelson, J. Am. Ceram. Soc. 52(8), 443 (1969)

    Article  Google Scholar 

  25. 25.

    D. Zhang, A.B. Karki, D. Rutman, D.P. Young, A. Wang, D. Cocke, T.H. Ho, Z. Guo, Polymer 50, 4189 (2009)

    Article  Google Scholar 

  26. 26.

    Y. Wang, J.J. Santiago, R. Furlan, I. Ramos, IEEE Trans. Nanotechnol. 2, 39 (2003)

    Article  ADS  Google Scholar 

  27. 27.

    Y. Wang, S. Serrano, J. Jorge, S. Aviles, Synth. Met. 138, 423 (2003)

    Article  Google Scholar 

  28. 28.

    R.P. Vidano, D.B. Fishbach, L.J. Willis, T.M. Loehr, Solid State Commun. 39, 341 (1981)

    Article  ADS  Google Scholar 

  29. 29.

    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  ADS  Google Scholar 

  30. 30.

    C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)

    Article  ADS  Google Scholar 

  31. 31.

    S. Johannes, S. Thomas, Z. Renato, ACS Nano 5(10), 8442 (2011)

    Article  Google Scholar 

  32. 32.

    Y. Saito, P. Verma, K. Masui, Y. Inouye, S. Kawata, J. Raman Spectrosc. 40, 1434 (2009)

    Article  ADS  Google Scholar 

  33. 33.

    R.J. Nemanich, S.A. Solin, Phys. Rev. B 20, 392 (1979)

    Article  ADS  Google Scholar 

  34. 34.

    L.W. Ji, X.W. Zhang, Electrochem. Commun. 11, 684 (2009)

    Article  Google Scholar 

  35. 35.

    L.W. Ji, X.W. Zhang, Electrochem. Commun. 11, 1146 (2009)

    Article  Google Scholar 

  36. 36.

    G.F. Zou, D.W. Zhang, C. Dong, H. Li, K. Xiong, L.F. Fei, Y.T. Qian, Carbon 44, 828 (2006)

    Article  Google Scholar 

  37. 37.

    D.S. Knight, W.B. White, J. Mater. Res. 4, 385 (1989)

    Article  ADS  Google Scholar 

  38. 38.

    K. Sinha, J. Menendez, Phys. Rev. B 41, 10845 (1990)

    Article  ADS  Google Scholar 

  39. 39.

    L.A. Grunes, Phys. Rev. B 27, 2111 (1983)

    Article  ADS  Google Scholar 

  40. 40.

    E. Kravtsov, D. Haskel, A. Cady, A. Yang, C. Vittoria, X. Zuo, V.G. Harris, Phys. Rev. B. 74, 104114 (2006)

    Article  ADS  Google Scholar 

  41. 41.

    M.P. Gonzalez-Sandoval, A.M. Beesley, M. Miki-Yoshida, L. Fuentes-Cobas, J.A. Matutes-Aquino, J. Alloy. Compd. 369(1–2), 190 (2004)

    Article  Google Scholar 

  42. 42.

    M. Sangmanee, S. Maensiri, Appl. Phys. A 97, 167 (2009)

    Article  ADS  Google Scholar 

  43. 43.

    S.T. Okuno, S. Hashimoto, K. Inomata, J. Appl. Phys. 71, 5926 (1992)

    Article  ADS  Google Scholar 

  44. 44.

    J. Garcia-Otero, M. Porto, J. Rivas, A. Bunde, Phys. Rev. Lett. 167, 99 (2000)

    Google Scholar 

  45. 45.

    S. Seraphin, C. Beeli, J.M. Bonard, J. Jiao, P.A. Stadelmann, A. Chatelain, J. Mater. Res. 14, 2861 (1999)

    Article  ADS  Google Scholar 

  46. 46.

    I.H. Chen, C.C. Wang, C.Y. Chen, Carbon 48, 604 (2010)

    Article  Google Scholar 

  47. 47.

    Y.Q. Qu, H.B. Yang, N. Yang, Y.Z. Fan, H.Y. Zhu, G.T. Zou, Mater. Lett. 60, 3548 (2006)

    Article  Google Scholar 

  48. 48.

    D.J. Craik, Magnetic Oxides (Wiley, New York, 1975), p. 705

  49. 49.

    P.C.R. Varma, R.S. Manna, D. Banerjee, M.R. Varma, K.G. Suresh, A.K. Nigamc, J. Alloy. Compd. 453, 298 (2008)

    Article  Google Scholar 

  50. 50.

    K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater. 308(2), 289 (2007)

    Article  ADS  Google Scholar 

  51. 51.

    Y.W. Ju, J.H. Park, H.R. Jung, S.J. Cho, W.J. Lee, Mater. Sci. Eng. B 147, 7 (2008)

    Article  Google Scholar 

  52. 52.

    Z.G. An, S.L. Pan, J.J. Zhang, J. Phys. Chem. C 113, 1346 (2009)

    Article  Google Scholar 

  53. 53.

    A.B. Nawale, N.S. Kanhe, K.R. Patil, S.V. Bhoraskar, V.L. Mathe, A.K. Das, J. Alloy. Compd. 509, 4404 (2011)

    Article  Google Scholar 

  54. 54.

    C.H. Chia, S. Zakaria, M. Yusoff, S.C. Goh, C.Y. Haw, S. Ahmadi, N.M. Huang, H.N. Lim, Ceram. Int. 36, 605 (2010)

    Article  Google Scholar 

  55. 55.

    Y.M.Z. Ahmed, M.M. Hessien, M.M. Rashad, I.A. Ibrahim, J. Magn. Magn. Mater. 321, 181 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand, for XAS facilities and the Department of Physics, Khon Kaen University for providing VSM facilities. S. Nilmoung would like to thank Rajamangala University of Technology Isan for her PhD study scholarship. This work was financially supported by SUT Research and Development Supporting Fund, Suranaree University of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Maensiri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nilmoung, S., Kidkhunthod, P., Pinitsoontorn, S. et al. Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers. Appl. Phys. A 119, 141–154 (2015). https://doi.org/10.1007/s00339-014-8893-2

Download citation

Keywords

  • Co3O4
  • CoFe2O4
  • Composite Nanofibers
  • Carbonization Process
  • Magnetic Source