Skip to main content
Log in

Morphological variations in AuxSiy nanostructures under variable pressure and annealing conditions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Well-ordered, substrate symmetry-driven, AuxSiy structures of average size ~25 nm were formed under ultra-high vacuum (UHV) conditions using molecular beam epitaxy method. Post-annealing was done at 500 °C in three different vacuum conditions: (1) low vacuum (LV) (10−2 mbar), (2) high vacuum (HV) (10−5 mbar) and (3) UHV (10−10 mbar) (MBE chamber). For both HV and LV cases, the AuxSiy nanostructures were found to have their corners rounded unlike in UHV case where the structures have sharp edges. In all the above three cases, samples were exposed to air before annealing. In situ annealing inside UHV chamber without exposing to air resulted in well-aligned rectangles with sharp corners, while sharp but irregular island structures were found for air exposed and UHV annealing system. The role of residual gases present in LV and HV annealing environment and inhibition of lateral surface diffusion due to the presence of surface oxide (through air exposure) would be discussed. Annealing at various conditions yielded variation in the coverage and correspondingly, the average area of nanostructures varied from a ~329 nm2 (as deposited) to ~2,578 nm2 (at high temperature). High-resolution transmission electron microscopy (planar and cross section) has been utilized to study the morphological variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.M. Whitesides, B. Grzybowski, Science 295, 2418 (2002)

    Article  ADS  Google Scholar 

  2. E. Piscopiello, L. Tapfer, M.V. Antisari, P. Paiano, P. Prete, Phys. Rev. B 78, 035305 (2008)

    Article  ADS  Google Scholar 

  3. J.P. Borel, Surf. Sci. 106, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998)

    Article  ADS  Google Scholar 

  5. M.G. Warner, J.E. Hutchison, Nat. Mater. 2, 272 (2003)

    Article  ADS  Google Scholar 

  6. Y. Xiao, F. Patolsky, E. Katz, J.F. Hainfeld, I. Willner, Science 299, 1877 (2003)

    Article  ADS  Google Scholar 

  7. A.T. Bell, Science 299, 1688 (2003)

    Article  ADS  Google Scholar 

  8. D. Ito, M.L. Jespersen, J.E. Hutchison, ACS Nano 2, 2001 (2008)

    Article  Google Scholar 

  9. A. Rath, J.K. Dash, R.R. Juluri, A. Rosenauer, M. Schoewalter, P.V. Satyam, J. Appl. Phys. 111, 064322 (2012)

    Article  ADS  Google Scholar 

  10. C.R. Henry, Prog. Surf. Sci. 80, 92 (2005)

    Article  ADS  Google Scholar 

  11. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)

    Article  Google Scholar 

  12. A. Rath, J.K. Dash, R.R. Juluri, A. Rosenauer, P.V. Satyam, J. Phys. D Appl. Phys. 44, 115301 (2011)

    Article  ADS  Google Scholar 

  13. U.M. Bhatta, J.K. Dash, A. Roy, A. Rath, P.V. Satyam, J. Phys.: Condens. Matter 21, 205403 (2009)

    ADS  Google Scholar 

  14. D.K. Goswami, B. Satpati, P.V. Satyam, B.N. Dev, Curr. Sci. 84, 903 (2003)

    Google Scholar 

  15. D.N. McCarthy, S.A. Brown, J. Phys. Conf. Ser 100, 072007 (2008)

    Article  ADS  Google Scholar 

  16. Au7Si (JCPDS-26-0723), Au5Si2 (JCPDS-36-0938)

  17. F. Ruffino, A. Canino, M.G. Grimaldi, F. Giannazzo, F. Roccaforte, V. Raineri, J. Appl. Phys. 104(2), 024310 (2008)

    Article  ADS  Google Scholar 

  18. B. Ressel, K.C. Prince, S. Heun, J. Appl. Phys. 93(7), 3886 (2003)

    Article  ADS  Google Scholar 

  19. K. Oura, T. Hanawa, Surf. Sci. 82, 202 (1979)

    Article  ADS  Google Scholar 

  20. M. Kageshima, Y. Torii, Y. Tano, O. Takeuchi, A. Kawazu, Surf. Sci. 472, 51 (2001)

    Article  ADS  Google Scholar 

  21. T. Engel, Surf. Sci. Rep. 18, 91 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  22. E.I. Alessandrini, D.R. Campbell, K.N. Tu, J. Appl. Phys. 45(11), 48888 (1974)

    Article  Google Scholar 

  23. J. Wang, C.E. Mitchell, R.G. Egdell, J.S. Foord, Surf. Sci. 506, 66 (2002)

    Article  ADS  Google Scholar 

  24. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Shumm et al., The NBS tables of chemical thermodynamic properties, J. Phys. Chem. Ref. Data, 11(2), (1982)

  25. JANAF, Thermo Chemical Tables US National Bureau of Standards, National Standard Reference Data Series—vol. 37, 2nd ed. (U.S. Government Printing Office, Washington D.C., (1971)

  26. K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface Science—An Introduction (Springer, Berlin, 2003). ISBN 978-3-662-05179-5

Download references

Acknowledgements

P. V. Satyam would like to thank and Department of Atomic Energy, Government of India, for 11th Plan and 12th Plan Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Satyam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, A., Dash, J.K., Juluri, R.R. et al. Morphological variations in AuxSiy nanostructures under variable pressure and annealing conditions. Appl. Phys. A 118, 1079–1085 (2015). https://doi.org/10.1007/s00339-014-8876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8876-3

Keywords

Navigation