Applied Physics A

, Volume 117, Issue 4, pp 1873–1878 | Cite as

Dynamics of ultrashort pulsed laser radiation induced non-thermal ablation of graphite

  • M. ReininghausEmail author
  • C. Kalupka
  • O. Faley
  • T. Holtum
  • J. Finger
  • C. Stampfer


We report on the dependence of a laser radiation induced ablation process of graphite on the applied pulse duration of ultrashort pulsed laser radiation smaller than 4 ps. The emerging so-called non-thermal ablation process of graphite has been confirmed to be capable to physically separate ultrathin graphitic layers from the surface of pristine graphite bulk crystal. This allows the deposition of ablated graphitic flakes on a substrate in the vicinity of the target. The observed ablation threshold determined at different pulse durations shows a modulation, which we ascribe to lattice motions along the c axis that are theoretically predicted to induce the non-thermal ablation process. In a simple approach, the ablation threshold can be described as a function of the energy penetration depth and the absorption of the applied ultrashort pulsed laser radiation. Based on the analysis of the pulse duration dependence of those two determining factors and the assumption of an invariant ablation process, we are able to reproduce the pulse duration dependence of the ablation threshold. Furthermore, the observed pulse duration dependences confirm the assumption of a fast material specific response of graphite target subsequent to optical excitation within the first 2 ps.


Pulse Duration Ablation Process Highly Orient Pyrolytic Graphite Ablation Threshold Graphite Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Deutsche Forschungsgemeinschaft (DFG) for financial funding of this work.


  1. 1.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Mater. Today 15, 564 (2012)CrossRefGoogle Scholar
  2. 2.
    P. Kumar, RSC Adv. 3, 11987 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Reininghaus, D. Wortmann, J. Finger, O. Faley, R. Poprawe, C. Stampfer, Appl. Phys. Lett. 100, 151606 (2012)CrossRefADSGoogle Scholar
  4. 4.
    H. Jeschke, M. Garcia, K. Bennemann, Phys. Rev. Lett. 87, 015003 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Y. Miyamoto, H. Zhang, D. Tománek, Phys. Rev. Lett. 104, 208302 (2010)CrossRefADSGoogle Scholar
  6. 6.
    H.O. Jeschke, M.E. Garcia, Appl. Surf. Sci. 197–198, 107 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Phys. Rev. B 69, 245419 (2004)CrossRefADSGoogle Scholar
  8. 8.
    F. Carbone, P. Baum, P. Rudolf, A. Zewail, Phys. Rev. Lett. 100, 035501 (2008)CrossRefADSGoogle Scholar
  9. 9.
    N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phys. Rev. Lett. 99, 176802 (2007)CrossRefADSGoogle Scholar
  10. 10.
    F. Carbone, G. Aubock, A. Cannizzo, F. van Mourik, R.R. Nair, A.K. Geim, K.S. Novoselov, M. Chergui, Chem. Phys. Lett. 504, 37 (2011)CrossRefADSGoogle Scholar
  11. 11.
    F. Carbone, Chem. Phys. Lett. 496, 291 (2010)CrossRefADSGoogle Scholar
  12. 12.
    K. Ishioka, M. Hase, M. Kitajima, L. Wirtz, A. Rubio, H. Petek, Phys. Rev. B 77, 121402 (2008)CrossRefADSGoogle Scholar
  13. 13.
    T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf, Phys. Rev. Lett. 95, 187403 (2005)CrossRefADSGoogle Scholar
  14. 14.
    I. Chatzakis, H. Yan, D. Song, S. Berciaud, T.F. Heinz, Phys. Rev. B 83, 205411 (2011)CrossRefADSGoogle Scholar
  15. 15.
    M. Lenner, A. Kaplan, C. Huchon, R. Palmer, Phys. Rev. B 79, 184105 (2009)CrossRefADSGoogle Scholar
  16. 16.
    T. Mishina, K. Nitta, Y. Masumoto, Phys. Rev. B 62, 2908 (2000)CrossRefADSGoogle Scholar
  17. 17.
    R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5, 4951 (1972)CrossRefADSGoogle Scholar
  18. 18.
    H. Yan, D. Song, K.F. Mak, I. Chatzakis, J. Maultzsch, T.F. Heinz, Phys. Rev. B 80, 121403 (2009)Google Scholar
  19. 19.
    J.M. Liu, Opt. Lett. 7, 196 (1982)CrossRefADSGoogle Scholar
  20. 20.
    B.N. Chichkov, C.S. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)CrossRefADSGoogle Scholar
  21. 21.
    K. Sokolowski-Tinten, S. Kudryashov, V. Temnov, J. Bialkowski, M. Boing, D.V. Linde, A. Cavalleri, in Femtosecond laser-induced ablation of graphite, Optical Society of America, Ultrafast Phenomena, vol. 43 (2000)Google Scholar
  22. 22.
    D.H. Reitze, H. Ahn, M.C. Downer, Phys. Rev. B 45, 2677 (1992)CrossRefADSGoogle Scholar
  23. 23.
    R. Raman, Y. Murooka, C.-Y. Ruan, T. Yang, S. Berber, D. Tománek, Phys. Rev. Lett. 101, 077401 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Reininghaus
    • 1
    • 2
    Email author
  • C. Kalupka
    • 1
  • O. Faley
    • 1
  • T. Holtum
    • 1
  • J. Finger
    • 1
  • C. Stampfer
    • 3
  1. 1.Chair for Laser TechnologyRWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer Institute for Laser TechnologyAachenGermany
  3. 3.JARA-FIT and II. Institute of PhysicsRWTH Aachen UniversityAachenGermany

Personalised recommendations