Skip to main content
Log in

Effect of KNbO3 modification on structural, electrical and magnetic properties of BiFeO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The polycrystalline samples of (Bi1−x K x ) (Fe1−x Nb x ) O3 (BKFN) for x = 0.0, 0.1, 0.2 and 0.3 were synthesized by a solid-state reaction method. The X-ray diffraction patterns of BKFN exhibit that the addition of KNbO3 in BiFeO3 gradually changes its structure from rhombohedral to pseudocubic. The analysis of scanning electron micrograph clearly showed that the sintered samples have well-defined and uniformly distributed grains. Addition of KNbO3 to BiFeO3 enhances the dielectric, ferroelectric and ferromagnetic properties of BiFeO3. Detailed studies of impedance and related parameters of BKFN using the complex impedance spectroscopic technique exhibit the significant contributions of grain and grain boundaries in the resistive and transport properties of the materials. Some oxygen vacancies created in the ceramic samples during high-temperature processing play an important role in the conduction mechanism. The leakage current or tangent loss of BiFeO3 is greatly reduced on addition of KNbO3 to the parent compound BiFeO3. Preliminary studies of ferroelectric and magnetic characteristics of the samples reveal the existence of ferroelectric, and weak ferromagnetic ordered ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kumar, K.L. Yadav, Appl. Phys. Lett. 91, 242901 (2007)

    Article  ADS  Google Scholar 

  2. S.R. Shannigrahi, A. Huang, D. Tripathy, A.O. Adeyeye, J. Magn. Magn. Mater. 320, 2215 (2008)

    Article  ADS  Google Scholar 

  3. X. Zheng, Q. Xu, Z. Wen, X. Lang, D. Wu, T. Qiu, M.X. Xu, J. Alloys Compd. 499, 108 (2010)

    Article  Google Scholar 

  4. V.A. Khomchenko, D.A. Kiselev, E.K. Selezneva, J.M. Vieira, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, A.L. Kholkin, Mater. Lett. 62, 1927 (2008)

    Article  Google Scholar 

  5. J. Dhahri, M. Boudard, S. Zemni, H. Roussel, M. Oumezzine, J. Solid State Chem. 181, 802 (2008)

    Article  ADS  Google Scholar 

  6. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett. 88, 212907 (2006)

    Article  ADS  Google Scholar 

  7. M. Fiebig, Th Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)

    Article  ADS  Google Scholar 

  8. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Musakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito, Nature 436, 1136 (2005)

    Article  ADS  Google Scholar 

  9. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  10. G.A. Smolenskii, I. Chupis, Sov. Phys. Usp. 25, 475 (1982)

    Article  ADS  Google Scholar 

  11. F. Kubel, H. Schmid, J. Cryst. Growth 129, 515 (1993)

    Article  ADS  Google Scholar 

  12. F. Kubel, H. Schmid, Acta Crystallogr. Sec. B Struct. Sci. 46, 698 (1990)

    Article  Google Scholar 

  13. I.G. Ismailzade, Phys. Status Solidi B 46, K39 (1971)

    Article  ADS  Google Scholar 

  14. S. Pattanayak, R.N.P. Choudhary, S.R. Shannigrahi, P.R. Das, R. Padhee, J. Magn. Magn. Mater. 341, 158 (2013)

    Article  ADS  Google Scholar 

  15. T.T. Carvaiho, J.R.A. Fernandes, J. Perez de La Cruz, J.V. Vidal, N.A. Sobolev, F. Figueiras, S. Das, V.S. Amaral, A. Almeida, J.A. Moreira, P.B. Tavares, J. Alloys Compd. 554, 97 (2013)

    Article  Google Scholar 

  16. Y. Ma, X.M. Chen, J. Appl. Phys. 105, 054107 (2009)

    Article  ADS  Google Scholar 

  17. R.N.P. Choudhary, K. Perez, P. Bhattacharya, R.S. Katiyar, Appl. Phys. A 86, 131 (2007)

    Article  ADS  Google Scholar 

  18. B.T. Matthias, J.P. Remeika, Phys. Rev. 82, 727 (1951)

    Article  ADS  Google Scholar 

  19. P. Gunter, J. Appl. Phys. 48, 3475 (1977)

    Article  ADS  Google Scholar 

  20. Y. Nakashima, T. Shimura, W. Sakamoto, T. Yogo, Ferroelectrics 356, 180 (2007)

    Article  Google Scholar 

  21. Powd EW. An Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.1, School of Physical science, Flinders University of South Australia, Bedford Park, SA 5042, Australia

  22. Z.M. Tian, Y.S. Zhang, S.L. Yuan, M.S. Wu, C.H. Wang, Z.Z. Ma, S.X. Huo, H.N. Duan, Mater. Sci. Eng., B 177, 74–78 (2012)

    Article  Google Scholar 

  23. Dunmin Lin, Qiaoji Zheng, Ying Li, Yang Wan, Qiang Li, Wei Zhou, J. Eur. Ceram. Soc. 33, 3023–3036 (2013)

    Article  Google Scholar 

  24. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Mater. Lett. 58, 2735 (2004)

    Article  Google Scholar 

  25. P. Kumar, M. Kar, Phys. B 448, 90 (2014)

  26. J. Prado-Gonjal, M.E. Villafuerte-Castrejon, L. Fuentes, E. Moran, Mater. Res. Bull. 44, 1734–1737 (2009)

    Article  Google Scholar 

  27. Z. Dai, Y. Akishide, J. Phys. D Appl. Phys. 43, 445403 (2010)

    Article  ADS  Google Scholar 

  28. M.L.V. Mahesh, V.V. Bhanu, Prasad, A.R. James. J. Alloys Compd. 611, 43–49 (2014)

    Article  Google Scholar 

  29. P. Ganguli, S. Devi, A.K. Jha, K.L. Deori, Ferroelectrics 381, 111 (2009)

    Article  Google Scholar 

  30. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  31. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  32. A. Mansingh, A. Dhar, J. Phys. D Appl. Phys. 18, 2059 (1985)

    Article  ADS  Google Scholar 

  33. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci.: Mater. Electron. 23, 779 (2011)

    Google Scholar 

  34. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  35. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, J. Alloys Compd. 394, 292 (2005)

    Article  Google Scholar 

  36. B.A. Scott, E.A. Geiss, B.L. Olson, G. Burns, A.W. Smith, D.F. O’Kane, Mater. Res. Bull. 5, 47 (1970)

    Article  Google Scholar 

  37. C. Wang, J. Appl. Phys. 99, 054104 (2006)

    Article  ADS  Google Scholar 

  38. X.D. Qi, Appl. Phys. Lett. 86, 062903 (2005)

    Article  ADS  Google Scholar 

  39. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Appl. Phys. 100, 084105 (2006)

    Article  ADS  Google Scholar 

  40. C.M. Raghavan, H.J. Kim, J.W. Kim, S.S. Kim, Mater. Res. Bull. 48, 4628–4632 (2013)

    Article  Google Scholar 

  41. H. Yang, H. Wang, G.F. Zou, M. Jain, N.A. Suvorova, D.M. Feldmann, P.C. Dowden, R.F. DePaula, J.L. MacManus-Driscoll, A.J. Taylor, Q.X. Jia, Appl. Phys. Lett. 93, 142904 (2008)

    Article  ADS  Google Scholar 

  42. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  ADS  Google Scholar 

  43. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. 103, 07E507 (2008)

    Google Scholar 

  44. R. Rai, S.K. Mishra, N.K. Singh, S. Sharma, A.L. Kholkin, Curr. Appl. Phys. 11, 508e512 (2011)

    Article  Google Scholar 

  45. Chao-Chao Zhou, Bing-Cheng Luo, Ke-Xin Jin, Xian-Sheng Cao, Chang-Le Chen, Solid State Commun. 150, 1334 (2010)

    Article  ADS  Google Scholar 

  46. M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayan, J. Magn. Magn. Mater. 188, 203 (1998)

    Article  ADS  Google Scholar 

  47. Pawan Kumar, Manoranjan Kar, J. Alloys Compd. 584, 566 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

Authors are grateful to IIT Kharagpur and Utkal University for some experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagatika Dash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Choudhary, R.N.P., Das, P.R. et al. Effect of KNbO3 modification on structural, electrical and magnetic properties of BiFeO3 . Appl. Phys. A 118, 1023–1031 (2015). https://doi.org/10.1007/s00339-014-8862-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8862-9

Keywords

Navigation