Skip to main content
Log in

The continuous and persistent periodical growth induced by substrate accommodation in In2O3 nanostructure chains and their photoluminescence properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The growth of pyramidal and triangular beaded In2O3 nanocrystal chains by using oxygen-assisted thermal evaporation, substrate accommodation and condensation method has been articulated. Self-assembled In2O3 nanocrystal chains have been synthesized by the vapor–solid (VS) and vapor–liquid–solid (VLS) growth mechanism and also through controlling the kinetics factors (saturation ratio). A periodical one-dimensional (1-D) and persistent (0-D) growth was proposed to explain the formation of lateral nanostructures, and this formation aspect was ascribed to the alternate 1-D and 0-D growth. Preparing the needed growth factor, the In2O3 nanocrystal chains extended to several micrometers. The growth mechanism analysis was useful to realize the relation between the kinetics factors and the complex nanostructure. The morphology and size of nanocrystals intensively were changed by oxygen concentration and led to interesting photoluminescence property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.G. Granqvist, Appl. Phys A Solids. Surf 57, 19 (1993)

    Article  ADS  Google Scholar 

  2. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  ADS  Google Scholar 

  3. A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, P. Siciliano, Chem. Mater. 15, 4377 (2003)

    Article  Google Scholar 

  4. V. Marotta, S. Orlando, G.P. Parisi, A. Giardini, Appl. Surf. Sci. 154, 640 (2000)

    Article  ADS  Google Scholar 

  5. C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1613 (2003)

    Article  ADS  Google Scholar 

  6. Y. Shigesato, S. Takaki, T.J. Haranoh, Appl. Phys. 71, 3356 (1992)

    Article  Google Scholar 

  7. B. Lei, C. Li, D.H. Zhang, Q.F. Zhou, K.K. Shung, C. Zhou, Appl. Phys. Lett. 84, 4553 (2004)

    Article  ADS  Google Scholar 

  8. M.J. Zheng, L.D. Zhang, G.H. Li, X.Y. Zhang, X.F. Wang, Appl. Phys. Lett. 79, 839 (2001)

    Article  ADS  Google Scholar 

  9. X.S. Peng, G.W. Meng, J. Zhang, X.F. Wang, Y.W. Wang, C.Z. Wang, L.D. Zhang, J. Mater. Chem. 12, 1602 (2002)

    Article  Google Scholar 

  10. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330 (2001)

    Article  Google Scholar 

  11. C. Li, D.H. Zhang, S. Han, X.L. Liu, T. Tang, C.W. Zhou, Adv. Mater. 15, 143 (2003)

    Article  Google Scholar 

  12. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Adv. Mater. 16, 65 (2004)

    Article  Google Scholar 

  13. C.L. Hsin, J.H. He, L.J. Chen, Appl. Surf. Sci. 244, 101 (2005)

    Article  ADS  Google Scholar 

  14. Y.G. Yan, Y. Zhang, H.B. Zeng, L.D. Zhang, Cryst. Growth Des. 7, 940 (2007)

    Article  Google Scholar 

  15. C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu, C. Zhou, Ann. N.Y. Acad. Sci. 1006, 104 (2003)

    Article  ADS  Google Scholar 

  16. P. Nguyen, H.T. Ng, T. Yamada, M.K. Smith, J. Li, J. Han, M. Meyyappan, Nano Lett. 4, 651 (2004)

    Article  ADS  Google Scholar 

  17. D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, C.W. Zhou, Nano Lett. 4, 1919 (2004)

    Article  ADS  Google Scholar 

  18. D.H. Zhang, C. Li, X.L. Liu, S. Han, T. Tang, C.W. Zhou, Appl. Phys. Lett. 83, 1845 (2003)

    Article  ADS  Google Scholar 

  19. K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Adv. Funct. Mater. 13, 553 (2003)

    Article  Google Scholar 

  20. H.Y. Peng, N. Wang, X.T. Zhou, Y.F. Zheng, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 359, 241 (2002)

    Article  ADS  Google Scholar 

  21. A.P. Levitt (ed.), Whisker Technology (Wiley-Interscience, New York, 1970)

    Google Scholar 

  22. P. Yang, C.M. Lieber, J. Mater. Res. 12, 2981 (1997)

    Article  ADS  Google Scholar 

  23. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  24. H. Kohno, S. Takeda, Appl. Phys. Lett. 73, 3144 (1998)

    Article  ADS  Google Scholar 

  25. Y.G. Yan, Y. Zhang, G.W. Meng, J. Cryst. Growth 294, 184 (2006)

    Article  ADS  Google Scholar 

  26. Y. Zhang, Y.G. Yan, F. Zhu, Nanoscale Res. Lett. 2, 492 (2007)

    Article  ADS  Google Scholar 

  27. Y.F. Hao, G.W. Meng, C.H. Ye, L.D. Zhang, Cryst. Growth Des. 5, 1617 (2005)

    Article  Google Scholar 

  28. G. Shen, B. Liang, X. Wang, H. Huang, D. Chen, Z.L. Wang, ACS Nano 5, 6148 (2011)

    Article  Google Scholar 

  29. M. Shariati, V. Ghafouri, Eur. Phys. J. Appl. Phys. 65, 20404 (2014)

    Article  ADS  Google Scholar 

  30. M. Shariati, V. Ghafouri, Int. J. Mod. Physics B 28, 1450101 (2014)

    Article  ADS  Google Scholar 

  31. N. Singh, T. Zhang, P.S. Lee, Nanotechnology 20, 195605 (2009)

    Article  ADS  Google Scholar 

  32. J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren, Chem. Phys. Lett. 372, 717 (2003)

    Article  ADS  Google Scholar 

  33. Y. Zhang, H.B. Jia, D.P. Yu, X.H. Luo, Z.S. Zhang, X.H. Chen, J. Mater. Res. 18, 2793 (2003)

    Article  ADS  Google Scholar 

  34. Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000)

    Article  Google Scholar 

  35. K. Sladek, F. Haas, M. Heidelmann, D. Park, J. Barthel, F. Dorn, T.E. Weirich, D. Grutzmacher, H. Hardtdegen, J. Crystal Growth 370, 141 (2013)

    Article  ADS  Google Scholar 

  36. C.L. Hsin, J.H. He, C.Y. Lee, W.W. Wu, P.H. Yeh, L.J. Chen, Z.L. Wang, Nano Lett. 7, 1799 (2007)

    Article  ADS  Google Scholar 

  37. T.Y. Zhang, Y.J. Su, Appl. Phys. Lett. 74, 1689 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Shariati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariati, M. The continuous and persistent periodical growth induced by substrate accommodation in In2O3 nanostructure chains and their photoluminescence properties. Appl. Phys. A 118, 997–1007 (2015). https://doi.org/10.1007/s00339-014-8858-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8858-5

Keywords

Navigation