Applied Physics A

, Volume 118, Issue 3, pp 823–829 | Cite as

Negative and positive magnetoresistance in GaInNAs/GaAs modulation-doped quantum well structures

  • Ferhat Nutku
  • Omer Donmez
  • Fahrettin Sarcan
  • Ayşe Erol
  • Janne Puustinen
  • Mehmet Çetin Arıkan
  • Mircea Guina


In this work, magnetoresistance of as-grown and annealed n- and p-type modulation-doped Ga0.68In0.32NyAs1−y/GaAs single quantum well structures with various nitrogen concentrations has been studied. At low temperatures and low magnetic fields, in n-type samples negative and in p-type samples positive, magnetoresistance has been observed. The observed negative magnetoresistance in n-type samples is an indication of enhanced backscattering of electrons due to the weak localization of the electrons as an effect of the N-induced defects. Nitrogen concentration and thermal annealing dependence of the magnetoresistance have been studied for both n- and p-type samples. The observed decrease in the negative magnetoresistance in n-type and enhanced positive magnetoresistance in p-type samples following thermal annealing have been explained by considering thermal annealing-induced improvement of mobility and the crystal quality in N-containing samples. After thermal annealing, the magnitude of negative magnetoresistance decreases and the breaking of the weak localization is achieved at lower magnetic fields in n-type samples. It is observed that as the mobility of the sample increases, critical magnetic field of negative to positive magnetoresistance transition becomes lower.


Thermal Annealing Hole Mobility Weak Localization Critical Magnetic Field Negative Magnetoresistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Project Number 110T874, Scientific Research Projects Coordination Unit of Istanbul University Project Numbers 9571, 27643 and the Ministry of Development of Turkey Project Number 2010K121050. We are also grateful to Tampere University of Technology for growing samples and COST Action MP0805 for enabling collaboration with Tampere University of Technology.


  1. 1.
    J. Wu, W. Shan, W. Walukiewicz, Semicond. Sci. Technol. 17, 860 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    J. Wu, W. Walukiewicz, E.E. Haller, Phys. Rev. B 65, 233210 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    A. Lindsay, E.P. O’Reilly, Phys. Rev. Lett. 93, 196402 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    E. O’Reilly, A. Lindsay, S. Fahy, J. Phys. Condens. Matter 16, S3257 (2004)CrossRefGoogle Scholar
  5. 5.
    E.P. O’Reilly, A. Lindsay, P.J. Klar, A. Polimeni, M. Capizzi, Semicond. Sci. Technol. 24, 033001 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    F. Sarcan, O. Donmez, A. Erol, M. Gunes, M.C. Arikan, J. Puustinen, M. Guina, Appl. Phys. Lett. 103, 082121 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    I.R. Pagnossin, A.K. Meikap, T.E. Lamas, G.M. Gusev, J.C. Portal, Phys. Rev. B 78, 115311 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    G.M. Minkov, O.E. Rut, A.V. Germanenko, A.A. Sherstobitov, V.I. Shashkin, O.I. Khrykin, V.M. Daniltsev, Phys. Rev. B 64, 235327 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    F. Sarcan, O. Donmez, M. Gunes, A. Erol, M.C. Arikan, J. Puustinen, M. Guina, Nanoscale Res. Lett. 7, 529 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Sun, N. Balkan, M. Aslan, S.B. Lisesivdin, H. Carrere, M.C. Arikan, X. Marie, J. Phys. Condens. Matter 174210, 1 (2009)Google Scholar
  11. 11.
    O. Dönmez, F. Sarcan, A. Erol, M. Gunes, M.C. Arikan, J. Puustinen, M. Guina, Nanoscale Res. Lett. 9, 141 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    B.J.F. Lin, M.A. Paalanen, A.C. Gossard, D.C. Tsui, Phys. Rev. B 29, 927 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    K.K. Choi, D.C. Tsui, S.C. Palmateer, Phys. Rev. B 33, 8216 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    E.P. O’Reilly, A. Lindsay, S. Tomic, M. Kamal-Saadi, Semicond. Sci. Technol. 17, 870 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Klar, Prog. Solid State Chem. 31, 301 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Hikami, A.I. Larkin, Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    W. Szott, C. Jedrzejek, W. Kirk, Phys. Rev. B 48, 8963 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    K.H. Gao, G. Yu, A.J. SpringThorpe, D.G. Austing, T. Lin, G.J. Hu, N. Dai, J.H. Chu, Solid State Commun. 151, 1537 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    G. Minkov, O. Rut, A. Germanenko, A. Sherstobitov, B. Zvonkov, E. Uskova, A. Birukov, Phys. Rev. B 65, 235322 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    J. Teubert, P.J. Klar, W. Heimbrodt, K. Volz, W. Stolz, P. Thomas, G. Leibiger, V. Gottschalch, Appl. Phys. Lett. 84, 747 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    W. Shan, W. Walukiewicz, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, J. Appl. Phys. 86, 2349 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    C.W.J. Beenakker, H. Van Houten, Solid State Phys. 228, 1 (1991)Google Scholar
  24. 24.
    W. Desrat, D.K. Maude, Z.R. Wasilewski, R. Airey, G. Hill, Phys. Rev. B 74, 193317 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    K.H. Gao, G. Yu, Y.M. Zhou, W.Z. Zhou, T. Lin, J.H. Chu, N. Dai, D.G. Austing, Y. Gu, Y.G. Zhang, Phys. Rev. B 79, 85310 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ferhat Nutku
    • 1
  • Omer Donmez
    • 1
  • Fahrettin Sarcan
    • 1
  • Ayşe Erol
    • 1
  • Janne Puustinen
    • 2
  • Mehmet Çetin Arıkan
    • 1
  • Mircea Guina
    • 2
  1. 1.Department of Physics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
  2. 2.Optoelectronics Research CentreTampere University of TechnologyTampereFinland

Personalised recommendations