Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

  • 152 Accesses

  • 7 Citations

Abstract

X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J.S. Coursey, D.S. Zucker, XCOM: Photon Cross Section Database (version 1.2). http://www.nist.gov/manuscript-publication-search.cfm?pub_id=100093

  2. 2.

    A. Brunetti, M. Sanchez del Rio, B. Golosio, A. Simionovici, A. Somogyi, A library for X-ray-matter interaction cross sections for X-ray fluorescence applications. Spectrochim. Acta Part B 59, 1725–1731 (2004)

  3. 3.

    T. Schoonjans, A. Brunetti, B. Golosio, M. Sanchez del Rio, V.A. Solé, C. Ferrero, L. Vincze, The xraylib library for X-ray-matter interactions. Recent developments. Spectrochim. Acta Part B 66, 776–784 (2011)

  4. 4.

    R. Cesareo, A. Brunetti, S. Ridolfi, Pigment layers and precious metal sheets by energy-dispersive X-ray fluorescence analysis. X-Ray Spectrom. 37, 309–316 (2008)

  5. 5.

    R. Cesareo, M.A. Rizzutto, A. Brunetti, D.V. Rao, Metal location and thickness in a multilayered sheet by measuring Kα/Kβ, Lα/Lβ and Lα/Lγ X-ray ratios. Nucl. Instrum. Methods Phys. Res. B 267(17), 2890–2896 (2009)

  6. 6.

    R. Cesareo, A. Brunetti, Metal sheets thickness determined by energy-dispersive X-ray fluorescence analysis. J. X-ray Sci. Technol. 16(2), 119–130 (2008)

  7. 7.

    R. Cesareo, A. Castellano, G. Buccolieri, S. Quarta, M. Marabelli, P. Santopadre, M. Leole, A. Brunetti, Portable equipment for energy dispersive X-ray fluorescence analysis of Giotto’s frescoes in the Chapel of the Scrovegni. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 213, 703–706 (2004)

  8. 8.

    R. Cesareo, J.T. de Assis, C. Roldán, A.D. Bustamante, A. Brunetti, N. Schiavon, Multilayered samples reconstructed by measuring Kα/Kβ or Lα/Lβ X-ray intensity ratios by EDXRF. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 312, 15–22 (2013)

  9. 9.

    U. Bottigli, A. Brunetti, B. Golosio, P. Oliva, S. Stumbo, L. Vincze, P. Randaccio, P. Bleuet, A. Simionovici, A. Somogyi, Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments. Spectrochim. Acta, Part B 59, 1747–1754 (2004)

  10. 10.

    MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision, 2, ed. by J.F. Briesmeister (Los Alamos National Lab, NM, USA). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/18/044/18044302.pdf

  11. 11.

    L. Vincze, K. Jansssens, F. Adams, A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers-I. Unpolarized radiation, homogeneous samples. Spectrochim. Acta, Part B 48, 553–573 (1993)

  12. 12.

    T. Schoonjans, L. Vincze, V.A. Solé, M. Sanchez del Rio, P. Brondeel, G. Silversmit, K. Appel, C. Ferrero, A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers—part 5. Polarized radiation, stratified samples, cascade effects, M-lines. Spectrochim. Acta Part B 70, 10–23 (2012)

  13. 13.

    X. Llovet, J. Fernandez-Varea, J. Sempau, F. Salvat, Monte Carlo simulation of X-ray emission using the general-purpose code PENELOPE. Surf. Interface Anal. 37, 1054–1058 (2005)

  14. 14.

    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, Geant 4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250–303 (2003)

  15. 15.

    B. Golosio, A. Brunetti, G.L. Masala, P. Oliva, T. Schoonjans, Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques. Comput. Phys. Commun. 185, 1044–1052 (2014)

  16. 16.

    A. Brunetti, B. Golosio, A new Monte Carlo code for simulation of the effect of irregular surfaces on X-Ray spectra. Spectrochim. Acta Part B 94–95, 58–62 (2014)

  17. 17.

    G. Piga, A. Santos-Cubedo, A. Brunetti, M. Piccinini, A. Malgosa, E. Napolitano, S. Enzo, A multi-technique approach by XRD, XRF, FT-IR to characterize the diagenesis of dinosaur bones from Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 92–107 (2011)

  18. 18.

    R. Cesareo, A. Brunetti, R. D’Oriano, A. Canu, G.M. Demontis, A. Celauro, A Roman bronze statuette with gilded silver mask from Sardinia: an EDXRF study. Appl. Phys. A Mater. Sci. Process. 113, 905–910 (2013)

  19. 19.

    A. Bustamante, R. Cesareo, A. Brunetti, M. Rizzutto, C. Calza, R. Pereira de Freitas, U. Holmsquit, D. Diestra, Analysis of pre-Columbian objects from Cupisnique, one of the oldest culture from Perú, using a portable X-ray fluorescence equipment. Appl. Phys. A Mater. Sci. Process. 113, 1065–1067 (2013)

  20. 20.

    T. Trojek, T. Cechak, L. Musılek, Monte Carlo simulations of disturbing effects in quantitative in situ X-ray fluorescence analysis and microanalysis. Nucl. Instrum. Methods Phys. Res., Sect. A 619, 266–269 (2010)

  21. 21.

    T. Trojek, Reduction of surface effects and relief reconstruction in X-ray fluorescence microanalysis of metallic objects. J. Anal. At. Spectrom. 26, 1253–1257 (2011)

  22. 22.

    L. Bonizzoni, A. Maloni, M. Milazzo, Evaluation of effects of irregular shape on quantitative XRF analysis of metal objects. X-Ray Spectrom. 35, 390–399 (2006)

Download references

Author information

Correspondence to Antonio Brunetti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunetti, A., Golosio, B., Melis, M.G. et al. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation. Appl. Phys. A 118, 497–504 (2015). https://doi.org/10.1007/s00339-014-8838-9

Download citation

Keywords

  • Monte Carlo
  • Monte Carlo Code
  • Fluorescence Photon
  • Variance Reduction Technique
  • Polychromatic Beam