Skip to main content

Application of Fano resonance effects in optical antennas formed by regular clusters of nanospheres

Abstract

This paper describes an analytical model developed to study the Fano resonance effect in clusters of spherical plasmonic nanoparticles under local excitation. The model depicted the case of a parallel single dipole emitter that was near-field coupled to a pentamer or heptamer cluster of nanospheres. Spatial polarization and field distributions of the optical states and resonance spectra for these cluster configurations were calculated. It was discovered that polarization interference between the nanoparticles triggered the formation of a second peak in the directivity spectra at 690 nm, and this in turn provided a mechanism for the occurrence of subradiant mode effects. The directivity calculation was analyzed in order to qualify the redirection of emission. Performances of various nanoantennae were investigated and fully characterized in terms of spatial geometric differences and the Fano resonance effect on plasmonic nanoparticles in the optical domain. Light radiation patterns were found to be significantly affected by nanosphere sizes and positioning of nanospheres with respect to the dipole. The analytical treatment of these modeled nanoantennae yielded results that are applicable to physical design and utilization considerations for pentamer and heptamer clusters in nanoantennae mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    K.A. Tetz, L. Pang, Y. Fainman, Opt. Lett. 31, 1528 (2006)

  2. 2.

    S.L. Chua, Y. Chong, A.D. Stone, M. Soljacic, J. Bravo-Abad, Opt. Express 19, 1539 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    Z.L. Samson, K.F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C.C. Huang, E. Di Fabrizio, D.W. Hewak, N.I. Zheludev, Appl. Phys. Lett. 96, 143105 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    J. Kim, J.-R. Kim, J.-O. Lee, J.W. Park, H.M. So, N. Kim, K. Kang, K.-H. Yoo, J.-J. Kim, Phys. Rev. Lett. 90, 166403 (2003)

    ADS  Article  Google Scholar 

  5. 5.

    N. Papasimakis, V.A. Fedotov, N.I. Zheludev, S.L. Prosvirnin, Phys. Rev. Lett. 101, 253903 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    S.Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W.L. Zhang, A.A. Bettiol, Phys. Rev. B 80, 153103 (2009)

  8. 8.

    B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    J.A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, G. Shvets, P. Nordlander, F. Capasso, Nano Lett. 10, 4680 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    J.B. Lassiter, H. Sobhani, M.W. Knight, W.S. Mielczarek, P. Nordlander, N.J. Halas, Nano Lett. 12, 1058 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    A.A. Abdumalikov Jr, O. Astafiev, A.M. Zagoskin, Y.A. Pashkin, Y. Nakamura, J.S. Tsai, Phys. Rev. Lett. 104, 193601 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    K.J. Boller, A. Imamolu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

  13. 13.

    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

  14. 14.

    Z. Fang, J. Cai, Z. Yan, P. Nordlander, N.J. Halas, X. Zhu, Nano Lett. 11, 4475 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    S. Zhang, K. Bao, N.J. Halas, H. Xu, P. Nordlander, Nano Lett. 11, 1657 (2011)

    ADS  Article  Google Scholar 

  16. 16.

    D. Solis Jr, B. Willingham, S.L. Nauert, L.S. Slaughter, J. Olson, P. Swanglap, A. Paul, W.S. Chang, S. Link, Nano Lett. 12, 1349 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, N.J. Halas, Nano Lett. 10, 3184 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    M. Frimmer, T. Coenen, A.F. Koenderink, Phys. Rev. Lett. 108, 077404 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T.Y. Liew, M.H. Hong, Nanotechnology 22, 245204 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    M. Rahmani, B. Lukiyanchuk, B. Ng, K.G.A. Tavakkoli, Y.F. Liew, M.H. Hong, Opt. Express 19, 4949 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    M. Rahmani, B. Lukiyanchuk, T.T.V. Nguyen, T. Tahmasebi, Y. Lin, T.Y.F. Liew, M.H. Hong, Optical Mater. Express 1, 1409 (2011)

    Article  Google Scholar 

  22. 22.

    K. Bao, N.A. Mirin, P. Nordlander, Appl. Phys. Mater. Sci. Process 100, 333 (2010)

    ADS  Article  Google Scholar 

  23. 23.

    S. Campione, S. Steshenko, M. Albani, F. Capolino, Characterization of the optical modes in 3D-periodic arrays of metallic nanospheres. General Assembly and Scientific Symposium, 2011 XXXth URSI, 13–20 Aug 2011

  24. 24.

    A.L. Aden, M. Kerker, J. Appl. Phys 22, 1242 (1951)

  25. 25.

    J. Jackson, Classical electrodynamics third edition ( Wiley-VCH, New Jersy, 1998)

    Google Scholar 

  26. 26.

    B. Stout, A. Devilez, B. Rolly, N. Bonod, J. Opt. Soc. Am. B 28, 1213–1223 (2011)

  27. 27.

    A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Phys. Rev. B 82, 045404 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    A. Vial, T. Laroche, J. Phys. D-Appl. Phys. 40, 7152 (2007)

  29. 29.

    C.F. Bohren, D.R. Huffman, in Absorption and scattering of light by small particles (Wiley, 2007), p. 1

  30. 30.

    M. Quinten, in Optical properties of nanoparticle systems : Mie and beyond (Wiley-VCH, 2011), p. 75

  31. 31.

    F. Papoff, B. Hourahine, Opt. Express 19, 21432–21444 (2011)

  32. 32.

    S.D. Emami, H. Ahmad, S.W. Harun, S.E. Mirnia, M.R.K. Soltanian, H.A.A. Rashid, Fano resonance on plasmonic nanostructures. Photonics (ICP), IEEE 3rd International Conference, University of Malaya, Malaysia, 144–148 Oct 2012

  33. 33.

    A.G. Litvak, M.D. Tokman, Phys. Rev. Lett. 88, 095003 (2002)

  34. 34.

    Y.S. Joe, A.M. Satanin, C.S. Kim, Phys. Scr. 74, 259 (2006)

  35. 35.

    T.H. Taminiau, F.D. Stefani, N.F. van Hulst, Nano Lett. 11, 1020 (2011)

  36. 36.

    B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Phys. Rev. A 88, 053819 (2013)

    ADS  Article  Google Scholar 

  37. 37.

    T. Taminiau, F. Stefani, F. Segerink, N. Van Hulst, Nat. Photonics 2, 234 (2008)

    Article  Google Scholar 

  38. 38.

    T. Pakizeh, M. Käll, Nano Lett. 9, 2343 (2009)

  39. 39.

    A.E. Krasnok, A.E. Miroshnichenko, P.A. Belov, Y.S. Kivshar, Opt. Express 20, 20599 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

Acknowledgement to University of Malaya for HIR funding under Grant Number UM.C/625/1/HIR/MOHE/SCI/29, RU 002/2013, PV0PV031/2012A, and PG094-2012B.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. D. Emami.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emami, S.D., Soltanian, M.R.K., Attaran, A. et al. Application of Fano resonance effects in optical antennas formed by regular clusters of nanospheres. Appl. Phys. A 118, 139–150 (2015). https://doi.org/10.1007/s00339-014-8832-2

Download citation

Keywords

  • Coupling Factor
  • Fano Resonance
  • Optical Antenna
  • Maximum Directivity
  • Nanoparticle Radius