Advertisement

Applied Physics A

, Volume 118, Issue 4, pp 1267–1271 | Cite as

High-performance UV photodetectors and temperature-dependent photoluminescence of individual ZnO hexagonal-prism microwire

  • Meng Ding
  • Dongxu ZhaoEmail author
  • Bin Yao
  • Qian Qiao
  • Xijin XuEmail author
Article

Abstract

ZnO hexagonal-prism microwires (HPMs) with the average width of about 50 μm have been fabricated by a floating zone method. Their structural, temperature-dependent photoluminescence (PL) and UV photoresponse based on an individual ZnO HPMs were systematically investigated. For the temperature-dependent PL properties, different transitions including free exciton emission, bound exciton emission and free-to-bound transition were clearly observed at 83 K. The individual ZnO HPM-based UV photodetector showed a response cut-off wavelength of 390 nm and an ultraviolet/visible ratio of about two orders of magnitude with an applied bias of 5 V.

Keywords

Applied Bias Free Exciton Phonon Replica Floating Zone Method Photoconductive Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by National Basic Research Program of China (973 Program) under Grant No. 2011CB302004, the National Natural Science Foundation of China (Grant Nos. 11304120, 11304121), the Encouragement Foundation for Excellent Middle-aged and Young Scientist of Shandong Province (Grant Nos. BS2012CL005, BS2013CL020), Doctoral foundation of University of Jinan (UJN) (Grant No. XBS1326). Thanks University of Jinan (UJN) for the support on new staff, and the project supported by the Taishan Scholar (No. TSHW20120210).

References

  1. 1.
    M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)CrossRefADSGoogle Scholar
  2. 2.
    T. Aoki, Y. Hatanaka, D.C. Look, Appl. Phys. Lett. 76, 3257 (2000)CrossRefADSGoogle Scholar
  3. 3.
    H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Adv. Mater. 14, 158 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Ding, D.X. Zhao, B. Yao, S.L. E, Z. Guo, L.G. Zhang, D.Z. Shen, Opt. Express 20, 13657 (2012)CrossRefADSGoogle Scholar
  5. 5.
    C. Czekalla, C. Sturm, R.S. Grund, B. Cao, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 92, 241102 (2008)CrossRefADSGoogle Scholar
  6. 6.
    R. Chen, B. Ling, X.W. Sun, H.D. Sun, Adv. Mater. 23, 2199 (2011)CrossRefGoogle Scholar
  7. 7.
    J.J. Qi, X.F. Hu, Z.Z. Wang, X. Li, W. Liu, Y. Zhang, Nanoscale 6, 6025 (2014)CrossRefADSGoogle Scholar
  8. 8.
    T.C. Zhang, Y. Guo, Z.X. Mei, C.Z. Gu, X.L. Du, Appl. Phys. Lett. 94, 113508 (2009)CrossRefADSGoogle Scholar
  9. 9.
    H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, Appl. Phys. Lett. 83, 1029 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Y.Y. Lin, C.W. Chen, W.C. Yen, W.F. Su, C.H. Ku, J.J. Wu, Appl. Phys. Lett. 92, 233301 (2008)CrossRefADSGoogle Scholar
  11. 11.
    P.N. Ni, C.X. Shan, S.P. Wang, X.Y. Liu, D.Z. Shen, J. Mater. Chem. C 1, 4445 (2013)CrossRefGoogle Scholar
  12. 12.
    S.P. Chang, C.Y. Lu, S.J. Chang, Y.Z. Chiou, T.J. Hsueh, C.L. Hsu, IEEE J. Sel. Top. Quantum Electron. 17, 990 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Nie, J.G. Hu, L.B. Luo, C. Xie, L.H. Zeng, P. Lv, F.Z. Li, J.S. Jie, M. Feng, C.Y. Wu, Y.Q. Yu, S.H. Yu, Small 9, 2872 (2013)CrossRefGoogle Scholar
  14. 14.
    Y.H. Liu, S.J. Young, C.H. Hsiao, L.W. Ji, T.H. Meen, W. Water, S.J. Chang, IEEE Photonics Technol. Lett. 26, 645 (2014)CrossRefADSGoogle Scholar
  15. 15.
    O. Lupan, L. Chow, G.Y. Chai, L. Chernyak, O.L. Tirpak, H. Heinrich, Phys. Stat. Sol. A 205, 2673 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Y.B. Li, F.D. Valle, M. Simonnet, I. Yamada, J.J. Delaunay, Nanotechnology 20, 045501 (2009)CrossRefADSGoogle Scholar
  17. 17.
    X.Y. Guo, Y.N. Yu, D.P. Xu, Z.H. Ding, W.H. Su, Chem. J. Chin. Univ. 27, 1811 (2006)Google Scholar
  18. 18.
    G.H. Du, F. Xu, Z.Y. Yuan, G.V. Tendeloo, Appl. Phys. Lett. 88, 243101 (2006)CrossRefADSGoogle Scholar
  19. 19.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, J. Appl. Phys. 79, 7983 (1996)CrossRefADSGoogle Scholar
  20. 20.
    G.C. Yi, W.I. Park, Adv. Mater. 14, 1841 (2002)CrossRefGoogle Scholar
  21. 21.
    L. Wischmeier, T. Voss, S. Börner, W. Schade, Appl. Phys. A 84, 111 (2006)CrossRefADSGoogle Scholar
  22. 22.
    J.S. Jie, G.Z. Wang, Y.M. Chen, X.H. Han, Q.T. Wang, B. Xu, J.G. Hou, Appl. Phys. Lett. 86, 031909 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefADSGoogle Scholar
  24. 24.
    S.W. Jung, W.I. Park, H.D. Cheong, G.C. Yi, H.M. Jang, S. Hong, T. Joo, Appl. Phys. Lett. 80, 1924 (2002)CrossRefADSGoogle Scholar
  25. 25.
    Y. Varshni, Physica 34, 149 (1967)CrossRefADSGoogle Scholar
  26. 26.
    Z. Guo, D.X. Zhao, D.Z. Shen, F. Fang, J.Y. Zhang, B.H. Li, Cryst. Growth Des. 7, 2294 (2007)CrossRefGoogle Scholar
  27. 27.
    W.I. Park, Y.H. Jun, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 82, 6 (2003)Google Scholar
  28. 28.
    L. Wang, N.C. Giles, J. Appl. Phys. 94, 973 (2003)CrossRefADSGoogle Scholar
  29. 29.
    T.Y. Zhai, Y. Ma, L. Li, X.S. Fang, M.Y. Liao, Y. Koide, J.N. Yao, Y. Bando, D. Golberg, J. Mater. Chem. 20, 6630 (2010)CrossRefGoogle Scholar
  30. 30.
    T.Y. Zhai, H.M. Liu, H.Q. Li, X.S. Fang, M.Y. Liao, L. Li, H.S. Zhou, Y. Koide, Y. Bando, D. Golberg, Adv. Mater. 22, 2547 (2010)CrossRefGoogle Scholar
  31. 31.
    S.C. Kung, W.E. Van Der Veer, F. Yang, K.C. Donavan, R.M. Penner, Nano Lett. 10, 1481 (2010)CrossRefADSGoogle Scholar
  32. 32.
    T.Y. Zhai, X.S. Fang, M.Y. Liao, X.J. Xu, H.B. Zeng, Y. Bando, D. Golberg, Sensors 9, 6504 (2009)CrossRefGoogle Scholar
  33. 33.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003 (2007)CrossRefADSGoogle Scholar
  34. 34.
    B. Zhang, X.D. Yang, J.W. Zhang, X.M. Bian, D. Wang, X.N. Zhang, X. Hou, J. Electron. Mater. 38, 609 (2009)CrossRefADSGoogle Scholar
  35. 35.
    Y.Z. Jin, J.P. Wang, B.Q. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Physics and TechnologyUniversity of JinanJinanPeople’s Republic of China
  2. 2.School of Naval Architecture and Ocean EngineeringZhejiang Ocean UniversityZhoushanPeople’s Republic of China
  3. 3.State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunPeople’s Republic of China
  4. 4.Department of PhysicsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations