Skip to main content
Log in

Identification and verification of a Preisach-based vector model for ferromagnetic materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In many applications of ferromagnetic materials concerning sensors and actuators, magnetic fields are rotating. In order to precisely describe the behavior of ferromagnetic materials in rotating magnetic fields, vector hysteresis models are necessary. Therefore, much effort is being put into the development of efficient vector models. For the reason of computational efficiency, models have been developed that differ from the Preisach approach and are for example based on rotationally coupled step functions. We have proposed a very efficient Preisach-based model before, which we called the rotational vector Preisach model. In this paper, we propose an extension of the rotational switching function, which improves the model characteristics for arbitrary H-field trajectories. We also introduce a set of special vectorial minor loops for the general validation and comparison of vector models. We apply those H-field trajectories to isotropic materials such as sputtered FeCo thin films as used in micromechanical systems. The vectorial minor loops can readily be utilized to evaluate the model output, and the results agree well with vectorial measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Adly, S. Abd-El-Hafiz, Efficient vector hysteresis modeling using rotationally coupled step functions. Phys. B 407(9), 1350–1353 (2012)

    Article  ADS  Google Scholar 

  2. A. Adly, D. Davino, A. Giustiniani, C. Visone, Vector magnetic hysteresis modeling of stress annealed galfenol. J. Appl. Phys. 113(17) (2013). doi:10.1063/1.4798307

  3. A.A. Adly, S.K. Abd-El-Hafiz, Vector hysteresis modeling using octal clusters of coupled step functions. J. Appl. Phys. 109(7), 07D342 (2011). doi:10.1063/1.3563071

    Google Scholar 

  4. T. Albach, A. Sutor, R. Lerch, Analysis of magnetostrictive microactuators. tm Tech. Mess. 77(2), 67–73 (2010)

    Google Scholar 

  5. T.S. Albach, P. Horn, A. Sutor, R. Lerch, Sound generation using a magnetostrictive microactuator. J. Appl. Phys. 109(7), 07E510 (2011)

    Article  Google Scholar 

  6. E. Cardelli, E. Della Torre, A general vector hysteresis operator: extension to the 3-d case. IEEE Trans. Magn. 46(12), 3990–4000 (2010)

    Article  ADS  Google Scholar 

  7. S.H. Charap, A. Ktena, Vector preisach modeling (invited). J. Appl. Phys. 73(10), 5818–5823 (1993)

    Article  ADS  Google Scholar 

  8. H. Cramer, A moving preisach vector hysteresis model for magnetic recording media. J. Magn. Magn. Mater. 88(12), 194–204 (1990)

    Article  ADS  Google Scholar 

  9. E. Dlala, A. Belahcen, K. Fonteyn, M. Belkasim, Improving loss properties of the Mayergoyz vector hysteresis model. IEEE Trans. Magn. 46(3), 918–924 (2010). doi:10.1109/TMAG.2009.2034846

    Article  ADS  Google Scholar 

  10. G. Kahler, E. Della Torre, Implementation of the Preisach–Stoner–Wohlfarth classical vector model. IEEE Trans. Magn. 46(1), 21–28 (2010). doi:10.1109/TMAG.2009.2030676

    Article  ADS  Google Scholar 

  11. A. Ktena, S. Charap, Vector preisach modeling and recording applications. IEEE Trans. Magn. 29(6), 3661–3663 (1993)

    Article  ADS  Google Scholar 

  12. A. Ktena, D. Fotiadis, P. Spanos, C. Massalas, A preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys. Phys. B 306(14), 84–90 (2001)

    Article  ADS  Google Scholar 

  13. M. Kuczmann, Vector preisach hysteresis modeling: measurement, identification and application. Phys. B 406(8), 1403–1409 (2011)

    Article  ADS  Google Scholar 

  14. J. Leite, N. Sadowski, P. Kuo-Peng, N. Batistela, J.P.A. Bastos, A. de Espindola, Inverse Jiles–Atherton vector hysteresis model. IEEE Trans. Magn. 40(4), 1769–1775 (2004)

    Article  ADS  Google Scholar 

  15. I.D. Mayergoyz, 2d vector preisach models and rotational hysteretic losses. J. Appl. Phys. 75(10), 5686–5688 (1994)

    Article  ADS  Google Scholar 

  16. I. Petrila, A. Stancu, Analytical vector generalization of the classical Stoner–Wohlfarth hysteron. J. Phys. Condens. Matter 23(7), 076,002 (2011)

    Article  Google Scholar 

  17. M.A. Pinto, Vectorial aspects of ferromagnetic hysteresis. J. Magn. Magn. Mater. 98(12), 221–229 (1991)

    Article  ADS  Google Scholar 

  18. T. Sato, T. Todaka, M. Enokizono, Improvement of integration-type dynamic e&s modeling. IEEE Trans Magn 47(5), 1126–1129 (2011)

    Article  ADS  Google Scholar 

  19. A. Sutor, J. Kallwies, R. Lerch, An efficient vector Preisach hysteresis model based on a novel switching operator. J. Appl. Phys. 111(7), 07D106 (2012). doi:10.1063/1.3672069

    Article  Google Scholar 

  20. A. Sutor, J. Kallwies, R. Lerch, Vectorial measuring and modelling of magnetic hysteresis. tm Tech. Mess. 79(4), 220–228 (2012)

    Article  Google Scholar 

  21. A. Sutor, S.J. Rupitsch, S. Bi, R. Lerch, A modified Preisach hysteresis operator for the modeling of temperature dependent magnetic material behavior. J. Appl. Phys. 109(7), 07D338 (2011)

    Article  Google Scholar 

  22. A. Sutor, S.J. Rupitsch, R. Lerch, A Preisach based hysteresis model for magnetic and ferroelectric hysteresis. Appl. Phys. A 100(2), 425–430 (2010). doi:10.1007/s00339-010-5884-9

    Article  ADS  Google Scholar 

  23. A. Sutor, B. Shasha, R. Lerch, Validation of the rotational vector Preisach model with measurements and simulations of vectorial minor loops. Appl. Phys. A (2013). doi:10.1007/s00339-013-7806-0

    Google Scholar 

  24. S. Urata, M. Enokizono, T. Todaka, H. Shimoji, Magnetic characteristic analysis of the motor considering 2-d vector magnetic property. IEEE Trans. Magn. 42(4), 615–618 (2006)

    Article  ADS  Google Scholar 

  25. P. Wawrzala, Application of a Preisach hysteresis model to the evaluation of PMN-PT ceramics properties. Arch. Metall. Mater. 58(4), 1347–1350 (2013)

    Google Scholar 

  26. P. Wawrzala, D. Bochenek, Analysis of hysteretic behavior in a pbzts ceramics by a Preisach distribution. Key Eng. Mater. 605, 441–444 (2014)

    Article  Google Scholar 

  27. K.C. Wiesen, S.H. Charap, C.S. Krafft, A rotational vector Preisach model for unoriented media. J. Appl. Phys. 67(9), 5367–5369 (1990)

    Article  ADS  Google Scholar 

  28. F. Wolf, A. Sutor, S. Rupitsch, R. Lerch, Modeling and measurement of hysteresis of ferroelectric actuators considering time-dependent behavior. Proc Eng 5, 87–90 (2010). doi:10.1016/j.proeng.2010.09.054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sutor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutor, A., Bi, S. & Lerch, R. Identification and verification of a Preisach-based vector model for ferromagnetic materials. Appl. Phys. A 118, 939–944 (2015). https://doi.org/10.1007/s00339-014-8817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8817-1

Keywords

Navigation