Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process
- 200 Downloads
- 3 Citations
Abstract
A method was developed to deagglomerate commercially available multi-walled carbon nanotube (MWCNT) bundles while maintaining the carbon nanotube aspect ratio. The process utilizes the rapid expansion of a supercritical carbon dioxide/MWCNT mixture to separate large primary carbon nanotube agglomerates. High levels of deagglomeration of Baytubes® C 150 P and Nanocyl™ NC-7000 MWCNT bundles were observed on the macroscale and nanoscale, resulting in 30-fold and 50-fold decreases in bulk density, respectively, with median agglomerate sizes <8 μm in diameter. These results were obtained while retaining the aspect ratio of the as-received nanomaterial, irrespective of the MWCNT agglomerate morphology. It was found that a temperature and pressure of 40 °C and 7.86 MP resulted in maximum deagglomeration without damage to the MWCNTs. Thermodynamic principles were applied to describe the effect of processing variables on the efficiency of the deagglomeration. These results suggest that combining this process with a composite processing step, such as melt compounding, will result in nanocomposites with enhanced electrical properties.
Keywords
Supercritical Carbon Dioxide Mach Disk Secondary Vessel scCO2 Treatment MWCNT BundleNotes
Acknowledgments
The authors would like to thank Bayer Material Science and Nanocyl™ for donating the Baytubes® C150P and NC-7000 MWCNT, respectively. In addition, the authors acknowledge use of the facilities at the Nanoscale Characterization and Fabrication Laboratory at Virginia Polytechnic Institute for the TEM and optical images. Finally, the authors would like to thank Dr. Erdogan Kiran for his assistance in the formulation of the pressure and temperature experiments.
References
- 1.S. Iijima, Nature 354, 6348 (1991)CrossRefGoogle Scholar
- 2.T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382, 6586 (1996)CrossRefGoogle Scholar
- 3.J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Adv. Mater. 11, 2 (1999)CrossRefGoogle Scholar
- 4.J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Phys. Rev. Lett. 82, 5 (1999)CrossRefGoogle Scholar
- 5.Q.W. Li, C.H. Liu, X.S. Wang, S.S. Fan, Nanotechnology 20, 14 (2009)Google Scholar
- 6.I. Alig, P. Potschke, D. Lellinger, T. Skipa, S. Pegel, G.R. Kasaliwal, T. Villmow, Polymer 53, 1 (2012)CrossRefGoogle Scholar
- 7.D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications, 2nd edn. (Wiley, New York, 1995)zbMATHGoogle Scholar
- 8.A.V. Kyrylyuk, P. van der Schoot, Proc. Natl. Acad. Sci. USA 105, 32 (2008)CrossRefGoogle Scholar
- 9.B.P. Grady, Thermal Conductivity, in Carbon Nanotube–Polymer Composites, ed. by A. Sastry (Wiley, New York, 2011), pp. 283–304Google Scholar
- 10.J.C.H. Affdl, J.L. Kardos, Polym. Eng. Sci. 16, 5 (1976)CrossRefGoogle Scholar
- 11.C.J. Kerr, Y.Y. Huang, J.E. Marshall, E.M. Terentjev, J. Appl. Phys. 109, 9 (2011)CrossRefGoogle Scholar
- 12.S. Badaire, P. Poulin, M. Maugey, C. Zakri, Langmuir 20, 24 (2004)CrossRefGoogle Scholar
- 13.K. Menzer, B. Krause, R. Boldt, B. Kretzschmar, R. Weidisch, P. Potschke, Compos. Sci. Technol. 71, 16 (2011)CrossRefGoogle Scholar
- 14.K. Menzer, B. Krause, R. Boldt, B. Kretzschmar, R. Weidisch, P. Potschke, Compos. Sci. Technol. 71, 16 (2011)CrossRefGoogle Scholar
- 15.R. Socher, B. Krause, M.T. Muller, R. Boldt, P. Potschke, Polymer 53, 2 (2012)CrossRefGoogle Scholar
- 16.J. Guo, Y. Liu, R. Prada-Silvy, Y. Tan, S. Azad, B. Krause, P. Pötschke, B.P. Grady, J. Polym. Sci. Part B Polym. Phys. 52, 73–83 (2013)Google Scholar
- 17.B. Krause, R. Bolcit, P. Potschke, Carbon 49, 4 (2011)CrossRefGoogle Scholar
- 18.T. McNally, P. Pötschke, Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications (Elsevier Science, Amsterdam, 2011)CrossRefGoogle Scholar
- 19.G. Parfitt, Dispersion of Solids in Liquids: with Special Reference to Pigments (Elsevier, Amsterdam, 1969)Google Scholar
- 20.H. Schubert, Chem.-Ing.-Tech. 51, 4 (1979)CrossRefGoogle Scholar
- 21.I. Manas-Zloczower, D.L. Feke, Int. Polym. Proc. 4, 1 (1989)CrossRefGoogle Scholar
- 22.S.P. Rwei, I. Manas-Zloczower, D.L. Feke, Polym. Eng. Sci. 30, 12 (1990)CrossRefGoogle Scholar
- 23.G.R. Kasaliwal, S. Pegel, A. Goldel, P. Potschke, G. Heinrich, Polymer 51, 12 (2010)CrossRefGoogle Scholar
- 24.D. Sanli, S.E. Bozbag, C. Erkey, J. Mater. Sci. 47, 7 (2012)Google Scholar
- 25.A.N. Khlobystov, D.A. Britz, J. Wang, S.A. O’Neil, M. Poliakoff, G.A.D. Briggs, J. Mater. Chem. 14, 19 (2004)CrossRefGoogle Scholar
- 26.J.L. Kendall, D.A. Canelas, J.L. Young, J.M. DeSimone, Chem. Rev. 99, 2 (1999)CrossRefGoogle Scholar
- 27.D. To, R. Dave, X. Yin, S. Sundaresan, AIChE J. 55, 11 (2009)CrossRefGoogle Scholar
- 28.C.W. Manke, E. Gulari, D.F. MielewskiE.C.-C. Lee, U.S. Patent (2002)Google Scholar
- 29.O. Brandt, A.M. Rajathurai, P. Roth, Exp. Fluids 5, 2 (1987)CrossRefGoogle Scholar
- 30.E. Reverchon, P. Pallado, J. Supercrit. Fluids 9, 4 (1996)Google Scholar
- 31.E. Gulari, K. Rangaramanujam G.K. Serhatkulu, US 7387749 (2008)Google Scholar
- 32.W.R. Jung, J.H. Choi, N. Lee, K. Shin, J.H. Moon, Y.S. Seo, Carbon 50, 2 (2012)Google Scholar
- 33.D. To, S. Sundaresan, R. Dave, J. Nanopart. Res. 13, 9 (2011)CrossRefGoogle Scholar
- 34.C. Chen, M. Bortner, J.P. Quigley, D.G. Baird, Polym Compos. 33, 6 (2012)Google Scholar
- 35.B. Krause, M. Mende, P. Potschke, G. Petzold, Carbon 48, 10 (2010)CrossRefGoogle Scholar
- 36.S.A. Nanocyl, Product. Datasheet Nanocyl NC 7000 series. Edition 2007-02-05. (Sambreville, Belgium, 2007)Google Scholar
- 37.Bayer MaterialScience AG. Data sheet Baytubes® C150P. Edition 2006-01-18 (2006)Google Scholar
- 38.Bayer MaterialScience AG. Data sheet Baytubes® C150P. Edition 2009-02-24 (2009)Google Scholar
- 39.B. Krause, M. Ritschel, C. Taschner, S. Oswald, W. Gruner, A. Leonhardt, P. Potschke, Compos. Sci. Technol. 70, 1 (2010)CrossRefGoogle Scholar
- 40.E. W. Lemmon, M. O. McLinden, D. G. Friend, in NIST webbook (Ebook), ed. by P.J. Linstrom, W.G. Mallard (2013)Google Scholar
- 41.T. Villmow, B. Kretzschmar, P. Potschke, Compos. Sci. Technol. 70, 14 (2010)CrossRefGoogle Scholar
- 42.M. Salzano de Luna, L. Pellegrino, M. Daghetta, C.V. Mazzocchia, D. Acierno G. Filippone, Compos. Sci. Technol. 85, 17–22 (2013) Google Scholar
- 43.F.Y. Castillo, R. Socher, B. Krause, R. Headrick, B.R. Grady, R. Prada-Silvy, P. Potschke, Polymer 52, 17 (2011)CrossRefGoogle Scholar
- 44.M. Weber, M.C. Thies, J. Supercrit. Fluids 40, 3 (2007)CrossRefGoogle Scholar
- 45.G. Kasaliwal, T. Villmow, S. Pegel, P. Potschke, 1st edn (Woodhead Publishing Ltd., 2011), pp. 92–109Google Scholar