Applied Physics A

, Volume 117, Issue 3, pp 1003–1017 | Cite as

Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process

  • John P. Quigley
  • Kevin Herrington
  • Michael Bortner
  • Donald G. Baird
Rapid communication


A method was developed to deagglomerate commercially available multi-walled carbon nanotube (MWCNT) bundles while maintaining the carbon nanotube aspect ratio. The process utilizes the rapid expansion of a supercritical carbon dioxide/MWCNT mixture to separate large primary carbon nanotube agglomerates. High levels of deagglomeration of Baytubes® C 150 P and Nanocyl™ NC-7000 MWCNT bundles were observed on the macroscale and nanoscale, resulting in 30-fold and 50-fold decreases in bulk density, respectively, with median agglomerate sizes <8 μm in diameter. These results were obtained while retaining the aspect ratio of the as-received nanomaterial, irrespective of the MWCNT agglomerate morphology. It was found that a temperature and pressure of 40 °C and 7.86 MP resulted in maximum deagglomeration without damage to the MWCNTs. Thermodynamic principles were applied to describe the effect of processing variables on the efficiency of the deagglomeration. These results suggest that combining this process with a composite processing step, such as melt compounding, will result in nanocomposites with enhanced electrical properties.


Supercritical Carbon Dioxide Mach Disk Secondary Vessel scCO2 Treatment MWCNT Bundle 



The authors would like to thank Bayer Material Science and Nanocyl™ for donating the Baytubes® C150P and NC-7000 MWCNT, respectively. In addition, the authors acknowledge use of the facilities at the Nanoscale Characterization and Fabrication Laboratory at Virginia Polytechnic Institute for the TEM and optical images. Finally, the authors would like to thank Dr. Erdogan Kiran for his assistance in the formulation of the pressure and temperature experiments.


  1. 1.
    S. Iijima, Nature 354, 6348 (1991)CrossRefGoogle Scholar
  2. 2.
    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382, 6586 (1996)CrossRefGoogle Scholar
  3. 3.
    J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Adv. Mater. 11, 2 (1999)CrossRefGoogle Scholar
  4. 4.
    J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Phys. Rev. Lett. 82, 5 (1999)CrossRefGoogle Scholar
  5. 5.
    Q.W. Li, C.H. Liu, X.S. Wang, S.S. Fan, Nanotechnology 20, 14 (2009)Google Scholar
  6. 6.
    I. Alig, P. Potschke, D. Lellinger, T. Skipa, S. Pegel, G.R. Kasaliwal, T. Villmow, Polymer 53, 1 (2012)CrossRefGoogle Scholar
  7. 7.
    D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications, 2nd edn. (Wiley, New York, 1995)MATHGoogle Scholar
  8. 8.
    A.V. Kyrylyuk, P. van der Schoot, Proc. Natl. Acad. Sci. USA 105, 32 (2008)CrossRefGoogle Scholar
  9. 9.
    B.P. Grady, Thermal Conductivity, in Carbon Nanotube–Polymer Composites, ed. by A. Sastry (Wiley, New York, 2011), pp. 283–304Google Scholar
  10. 10.
    J.C.H. Affdl, J.L. Kardos, Polym. Eng. Sci. 16, 5 (1976)CrossRefGoogle Scholar
  11. 11.
    C.J. Kerr, Y.Y. Huang, J.E. Marshall, E.M. Terentjev, J. Appl. Phys. 109, 9 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Badaire, P. Poulin, M. Maugey, C. Zakri, Langmuir 20, 24 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Menzer, B. Krause, R. Boldt, B. Kretzschmar, R. Weidisch, P. Potschke, Compos. Sci. Technol. 71, 16 (2011)CrossRefGoogle Scholar
  14. 14.
    K. Menzer, B. Krause, R. Boldt, B. Kretzschmar, R. Weidisch, P. Potschke, Compos. Sci. Technol. 71, 16 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Socher, B. Krause, M.T. Muller, R. Boldt, P. Potschke, Polymer 53, 2 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Guo, Y. Liu, R. Prada-Silvy, Y. Tan, S. Azad, B. Krause, P. Pötschke, B.P. Grady, J. Polym. Sci. Part B Polym. Phys. 52, 73–83 (2013)Google Scholar
  17. 17.
    B. Krause, R. Bolcit, P. Potschke, Carbon 49, 4 (2011)CrossRefGoogle Scholar
  18. 18.
    T. McNally, P. Pötschke, Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications (Elsevier Science, Amsterdam, 2011)CrossRefGoogle Scholar
  19. 19.
    G. Parfitt, Dispersion of Solids in Liquids: with Special Reference to Pigments (Elsevier, Amsterdam, 1969)Google Scholar
  20. 20.
    H. Schubert, Chem.-Ing.-Tech. 51, 4 (1979)CrossRefGoogle Scholar
  21. 21.
    I. Manas-Zloczower, D.L. Feke, Int. Polym. Proc. 4, 1 (1989)CrossRefGoogle Scholar
  22. 22.
    S.P. Rwei, I. Manas-Zloczower, D.L. Feke, Polym. Eng. Sci. 30, 12 (1990)CrossRefGoogle Scholar
  23. 23.
    G.R. Kasaliwal, S. Pegel, A. Goldel, P. Potschke, G. Heinrich, Polymer 51, 12 (2010)CrossRefGoogle Scholar
  24. 24.
    D. Sanli, S.E. Bozbag, C. Erkey, J. Mater. Sci. 47, 7 (2012)Google Scholar
  25. 25.
    A.N. Khlobystov, D.A. Britz, J. Wang, S.A. O’Neil, M. Poliakoff, G.A.D. Briggs, J. Mater. Chem. 14, 19 (2004)CrossRefGoogle Scholar
  26. 26.
    J.L. Kendall, D.A. Canelas, J.L. Young, J.M. DeSimone, Chem. Rev. 99, 2 (1999)CrossRefGoogle Scholar
  27. 27.
    D. To, R. Dave, X. Yin, S. Sundaresan, AIChE J. 55, 11 (2009)CrossRefGoogle Scholar
  28. 28.
    C.W. Manke, E. Gulari, D.F. MielewskiE.C.-C. Lee, U.S. Patent (2002)Google Scholar
  29. 29.
    O. Brandt, A.M. Rajathurai, P. Roth, Exp. Fluids 5, 2 (1987)CrossRefGoogle Scholar
  30. 30.
    E. Reverchon, P. Pallado, J. Supercrit. Fluids 9, 4 (1996)Google Scholar
  31. 31.
    E. Gulari, K. Rangaramanujam G.K. Serhatkulu, US 7387749 (2008)Google Scholar
  32. 32.
    W.R. Jung, J.H. Choi, N. Lee, K. Shin, J.H. Moon, Y.S. Seo, Carbon 50, 2 (2012)Google Scholar
  33. 33.
    D. To, S. Sundaresan, R. Dave, J. Nanopart. Res. 13, 9 (2011)CrossRefGoogle Scholar
  34. 34.
    C. Chen, M. Bortner, J.P. Quigley, D.G. Baird, Polym Compos. 33, 6 (2012)Google Scholar
  35. 35.
    B. Krause, M. Mende, P. Potschke, G. Petzold, Carbon 48, 10 (2010)CrossRefGoogle Scholar
  36. 36.
    S.A. Nanocyl, Product. Datasheet Nanocyl NC 7000 series. Edition 2007-02-05. (Sambreville, Belgium, 2007)Google Scholar
  37. 37.
    Bayer MaterialScience AG. Data sheet Baytubes® C150P. Edition 2006-01-18 (2006)Google Scholar
  38. 38.
    Bayer MaterialScience AG. Data sheet Baytubes® C150P. Edition 2009-02-24 (2009)Google Scholar
  39. 39.
    B. Krause, M. Ritschel, C. Taschner, S. Oswald, W. Gruner, A. Leonhardt, P. Potschke, Compos. Sci. Technol. 70, 1 (2010)CrossRefGoogle Scholar
  40. 40.
    E. W. Lemmon, M. O. McLinden, D. G. Friend, in NIST webbook (Ebook), ed. by P.J. Linstrom, W.G. Mallard (2013)Google Scholar
  41. 41.
    T. Villmow, B. Kretzschmar, P. Potschke, Compos. Sci. Technol. 70, 14 (2010)CrossRefGoogle Scholar
  42. 42.
    M. Salzano de Luna, L. Pellegrino, M. Daghetta, C.V. Mazzocchia, D. Acierno G. Filippone, Compos. Sci. Technol. 85, 17–22 (2013) Google Scholar
  43. 43.
    F.Y. Castillo, R. Socher, B. Krause, R. Headrick, B.R. Grady, R. Prada-Silvy, P. Potschke, Polymer 52, 17 (2011)CrossRefGoogle Scholar
  44. 44.
    M. Weber, M.C. Thies, J. Supercrit. Fluids 40, 3 (2007)CrossRefGoogle Scholar
  45. 45.
    G. Kasaliwal, T. Villmow, S. Pegel, P. Potschke, 1st edn (Woodhead Publishing Ltd., 2011), pp. 92–109Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • John P. Quigley
    • 1
  • Kevin Herrington
    • 1
  • Michael Bortner
    • 1
  • Donald G. Baird
    • 1
    • 2
  1. 1.Department of Chemical EngineeringVirginia TechBlacksburgUSA
  2. 2.Macromolecules and Interfaces InstituteVirginia TechBlacksburgUSA

Personalised recommendations