Bi-stable resistive switching in an array of \(\hbox {Cu/Cu}_x\hbox {O/Au}\) nanowires

Abstract

A resistive switching system comprising of metal–insulator–metal \((\hbox {Cu/Cu}_x\hbox {O/Au})\) sandwich-structured nanowires embedded within polycarbonate membrane has been investigated. The system switches from non-Ohmic high resistive state (HRS) to Ohmic low resistive state on application of a critical bias of \(\sim \)2.5 V. The bipolar switching can be performed by applying current bias as well. Driving two suitable currents, \(I_{\mathrm{set}}= 50\,\upmu \hbox {A}\) and \(I_{\mathrm{reset}}= -0.5\,\hbox {mA},\) we observe highly reproducible switching between two stable resistive states. The switching is initiated by establishment of filamentary conduction path commonly formed in oxide materials. However, the main charge transport in the HRS is governed with modified activated behavior, which is obvious from the antisymmetric, reversible I–V characteristic following \(I=aV\exp [(-E_A+b|V|)/k_BT]\) where a, b and \(E_A\) are constants. The exponential term corresponds to charge generation by field-enhanced thermal activation process, whereas the linear term is related to mobility.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A. Fert, Rev. Mod. Phys. 80, 1517 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)

    ADS  Article  Google Scholar 

  3. 3.

    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    ADS  Article  Google Scholar 

  4. 4.

    J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995)

    ADS  Article  Google Scholar 

  5. 5.

    B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991)

    ADS  Article  Google Scholar 

  6. 6.

    A. Brataas, D.A. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    ADS  Article  Google Scholar 

  8. 8.

    L. Berger, Phys. Rev. B 54, 9353 (1996)

    ADS  Article  Google Scholar 

  9. 9.

    R. Waser, M. Aono, Nature 6, 833 (2007)

    Article  Google Scholar 

  10. 10.

    E. Linn, R. Rosezin, C. Kügeler, R. Waser, Nat. Mater. 9, 403 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    J.J. Yang, D.B. Strukov, D.R. Srewart, Nat. Nanotech. 8, 13 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    D. Lee, J. Woo, E. Cha, S. Park, S. Lee, J. Park, H. Hwang, IEEE Electron Device Lett. 34, 1250 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    D. Lee, J. Woo, S. Park, E. Cha, S. Lee, H. Hwang, Appl. Phys. Lett. 104, 083507 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Srewart, R.S. Williums, Nat. Nanotech. 3, 429 (2008)

    Article  Google Scholar 

  15. 15.

    J.J. Yang, PJohn Strachan, Q. Xia, D.A.A. Ohlberg, P.J. Kuekes et al., Adv. Mat. 22, 4034 (2010)

    Article  Google Scholar 

  16. 16.

    K.J. Yoon, M.H. Lee, G.H. Kim, S.J. Song, J.Y. Seok et al., Nanotechnology 23, 185202 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    D.S. Jeong, H. Schroeder, R. Waser, Nanotechnology 20, 375201 (2009)

    Article  Google Scholar 

  18. 18.

    K.M. Kim, G.H. Kim, S.J. Song, J.Y. Seok, M.H. Lee et al., Nanotechnology 21, 305203 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    L.W. Feng, C.Y. Chang, Y.F. Chang, W.R. Chen, S.Y. Wang et al., Appl. Phys. Lett. 96, 052111 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    J.S. Choi, J.-S. Kim, I.R. Hwang, S.H. Hong, S.H. Jeon et al., Appl. Phys. Lett. 95, 022109 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    H.S. Lee, J.A. Bain, S. Choi, P.A. Salvador, Appl. Phys. Lett. 90, 202107 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    C. Rossel, G.I. Meijer, D. Brémaud, D. Widmer, J. Appl. Phys. 90, 2892 (2001)

    ADS  Article  Google Scholar 

  23. 23.

    A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 139 (2000)

    ADS  Article  Google Scholar 

  24. 24.

    Jin-Woo Han, M. Meyyappan, AIP Adv. 1, 032162 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    Takeshi Yanagida, Kazuki Nagashima, Keisuke Oka, Masaki Kanai, Annop Klamchuen, Bae Ho Park, Tomoji Kawai, Sci. Rep. 3, 1657 (2013)

    ADS  Google Scholar 

  26. 26.

    Krzysztof Szot, Wolfgang Speier, Gustav Bihlmayer, Rainer Waser, Nat. Mater. 5, 312 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    Deok-kee Kim, Ho Sun Shin, Jae Yong Song, Appl. Phys. Express 5, 085001 (2012)

    ADS  Article  Google Scholar 

  28. 28.

    Lars Dugaiczyk, Tam-Triet Ngo-Duc, Jovi Gacusan, Karandeep Singh, Jonathan Yang et al., Chem. Phys. Lett. 575, 112 (2013)

    ADS  Article  Google Scholar 

  29. 29.

    Kazuki Nagashima, Takeshi Yanagida, Keisuke Oka, Masateru Taniguchi, Tomoji Kawai, Jin-Soo Kim, Bae Ho Park, Nano Lett. 10, 1359 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    Lijie Li, Yan Zhang, Zhengjun Chew, Nano-Micro Lett. 5, 159 (2013)

    Article  Google Scholar 

  31. 31.

    S. Gayen, M.K. Sanyal, B. Satpati, A. Rahman, Appl. Phys. A 112, 775 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    O. Mitrofanov, M. Manfra, J. Appl. Phys. 95, 6414 (2004)

    ADS  Article  Google Scholar 

  33. 33.

    J.G. Simmons, Phys. Rev. 155, 657 (1967)

    ADS  Article  Google Scholar 

  34. 34.

    A. Rose, Phys. Rev. 97, 1538 (1955)

    ADS  Article  Google Scholar 

  35. 35.

    M.A. Lampert, Phys. Rev. 103, 1648 (1956)

    ADS  Article  Google Scholar 

  36. 36.

    M.P. Delmo, S. Yamamoto, S. Kasai, T. Ono, K. Kobayashi, Nature 457, 1112 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    J.G. Simmons, R.R. Verderber, Proc. R. Soc. Lond. Ser. A 301, 77 (1967)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milan K. Sanyal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gayen, S., Sanyal, M.K., Sarma, A. et al. Bi-stable resistive switching in an array of \(\hbox {Cu/Cu}_x\hbox {O/Au}\) nanowires. Appl. Phys. A 118, 119–124 (2015). https://doi.org/10.1007/s00339-014-8790-8

Download citation

Keywords

  • Resistive Switching
  • High Resistive State
  • Native Oxide Layer
  • Nyquist Curve
  • Impedance Spectroscopy Study