Skip to main content
Log in

Bi-stable resistive switching in an array of \(\hbox {Cu/Cu}_x\hbox {O/Au}\) nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A resistive switching system comprising of metal–insulator–metal \((\hbox {Cu/Cu}_x\hbox {O/Au})\) sandwich-structured nanowires embedded within polycarbonate membrane has been investigated. The system switches from non-Ohmic high resistive state (HRS) to Ohmic low resistive state on application of a critical bias of \(\sim \)2.5 V. The bipolar switching can be performed by applying current bias as well. Driving two suitable currents, \(I_{\mathrm{set}}= 50\,\upmu \hbox {A}\) and \(I_{\mathrm{reset}}= -0.5\,\hbox {mA},\) we observe highly reproducible switching between two stable resistive states. The switching is initiated by establishment of filamentary conduction path commonly formed in oxide materials. However, the main charge transport in the HRS is governed with modified activated behavior, which is obvious from the antisymmetric, reversible I–V characteristic following \(I=aV\exp [(-E_A+b|V|)/k_BT]\) where a, b and \(E_A\) are constants. The exponential term corresponds to charge generation by field-enhanced thermal activation process, whereas the linear term is related to mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fert, Rev. Mod. Phys. 80, 1517 (2008)

    Article  ADS  Google Scholar 

  2. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)

    Article  ADS  Google Scholar 

  3. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  4. J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  5. B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991)

    Article  ADS  Google Scholar 

  6. A. Brataas, D.A. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)

    Article  ADS  Google Scholar 

  7. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  8. L. Berger, Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  9. R. Waser, M. Aono, Nature 6, 833 (2007)

    Article  Google Scholar 

  10. E. Linn, R. Rosezin, C. Kügeler, R. Waser, Nat. Mater. 9, 403 (2010)

    Article  ADS  Google Scholar 

  11. J.J. Yang, D.B. Strukov, D.R. Srewart, Nat. Nanotech. 8, 13 (2013)

    Article  ADS  Google Scholar 

  12. D. Lee, J. Woo, E. Cha, S. Park, S. Lee, J. Park, H. Hwang, IEEE Electron Device Lett. 34, 1250 (2013)

    Article  ADS  Google Scholar 

  13. D. Lee, J. Woo, S. Park, E. Cha, S. Lee, H. Hwang, Appl. Phys. Lett. 104, 083507 (2014)

    Article  ADS  Google Scholar 

  14. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Srewart, R.S. Williums, Nat. Nanotech. 3, 429 (2008)

    Article  Google Scholar 

  15. J.J. Yang, PJohn Strachan, Q. Xia, D.A.A. Ohlberg, P.J. Kuekes et al., Adv. Mat. 22, 4034 (2010)

    Article  Google Scholar 

  16. K.J. Yoon, M.H. Lee, G.H. Kim, S.J. Song, J.Y. Seok et al., Nanotechnology 23, 185202 (2012)

    Article  ADS  Google Scholar 

  17. D.S. Jeong, H. Schroeder, R. Waser, Nanotechnology 20, 375201 (2009)

    Article  Google Scholar 

  18. K.M. Kim, G.H. Kim, S.J. Song, J.Y. Seok, M.H. Lee et al., Nanotechnology 21, 305203 (2010)

    Article  ADS  Google Scholar 

  19. L.W. Feng, C.Y. Chang, Y.F. Chang, W.R. Chen, S.Y. Wang et al., Appl. Phys. Lett. 96, 052111 (2010)

    Article  ADS  Google Scholar 

  20. J.S. Choi, J.-S. Kim, I.R. Hwang, S.H. Hong, S.H. Jeon et al., Appl. Phys. Lett. 95, 022109 (2009)

    Article  ADS  Google Scholar 

  21. H.S. Lee, J.A. Bain, S. Choi, P.A. Salvador, Appl. Phys. Lett. 90, 202107 (2007)

    Article  ADS  Google Scholar 

  22. C. Rossel, G.I. Meijer, D. Brémaud, D. Widmer, J. Appl. Phys. 90, 2892 (2001)

    Article  ADS  Google Scholar 

  23. A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 139 (2000)

    Article  ADS  Google Scholar 

  24. Jin-Woo Han, M. Meyyappan, AIP Adv. 1, 032162 (2011)

    Article  ADS  Google Scholar 

  25. Takeshi Yanagida, Kazuki Nagashima, Keisuke Oka, Masaki Kanai, Annop Klamchuen, Bae Ho Park, Tomoji Kawai, Sci. Rep. 3, 1657 (2013)

    ADS  Google Scholar 

  26. Krzysztof Szot, Wolfgang Speier, Gustav Bihlmayer, Rainer Waser, Nat. Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  27. Deok-kee Kim, Ho Sun Shin, Jae Yong Song, Appl. Phys. Express 5, 085001 (2012)

    Article  ADS  Google Scholar 

  28. Lars Dugaiczyk, Tam-Triet Ngo-Duc, Jovi Gacusan, Karandeep Singh, Jonathan Yang et al., Chem. Phys. Lett. 575, 112 (2013)

    Article  ADS  Google Scholar 

  29. Kazuki Nagashima, Takeshi Yanagida, Keisuke Oka, Masateru Taniguchi, Tomoji Kawai, Jin-Soo Kim, Bae Ho Park, Nano Lett. 10, 1359 (2010)

    Article  ADS  Google Scholar 

  30. Lijie Li, Yan Zhang, Zhengjun Chew, Nano-Micro Lett. 5, 159 (2013)

    Article  Google Scholar 

  31. S. Gayen, M.K. Sanyal, B. Satpati, A. Rahman, Appl. Phys. A 112, 775 (2013)

    Article  ADS  Google Scholar 

  32. O. Mitrofanov, M. Manfra, J. Appl. Phys. 95, 6414 (2004)

    Article  ADS  Google Scholar 

  33. J.G. Simmons, Phys. Rev. 155, 657 (1967)

    Article  ADS  Google Scholar 

  34. A. Rose, Phys. Rev. 97, 1538 (1955)

    Article  ADS  Google Scholar 

  35. M.A. Lampert, Phys. Rev. 103, 1648 (1956)

    Article  ADS  Google Scholar 

  36. M.P. Delmo, S. Yamamoto, S. Kasai, T. Ono, K. Kobayashi, Nature 457, 1112 (2009)

    Article  ADS  Google Scholar 

  37. J.G. Simmons, R.R. Verderber, Proc. R. Soc. Lond. Ser. A 301, 77 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan K. Sanyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayen, S., Sanyal, M.K., Sarma, A. et al. Bi-stable resistive switching in an array of \(\hbox {Cu/Cu}_x\hbox {O/Au}\) nanowires. Appl. Phys. A 118, 119–124 (2015). https://doi.org/10.1007/s00339-014-8790-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8790-8

Keywords

Navigation