Applied Physics A

, Volume 118, Issue 1, pp 119–124 | Cite as

Bi-stable resistive switching in an array of \(\hbox {Cu/Cu}_x\hbox {O/Au}\) nanowires

  • Sirshendu Gayen
  • Milan K. Sanyal
  • Abhisakh Sarma
  • Biswarup Satpati
Article
  • 120 Downloads

Abstract

A resistive switching system comprising of metal–insulator–metal \((\hbox {Cu/Cu}_x\hbox {O/Au})\) sandwich-structured nanowires embedded within polycarbonate membrane has been investigated. The system switches from non-Ohmic high resistive state (HRS) to Ohmic low resistive state on application of a critical bias of \(\sim \)2.5 V. The bipolar switching can be performed by applying current bias as well. Driving two suitable currents, \(I_{\mathrm{set}}= 50\,\upmu \hbox {A}\) and \(I_{\mathrm{reset}}= -0.5\,\hbox {mA},\) we observe highly reproducible switching between two stable resistive states. The switching is initiated by establishment of filamentary conduction path commonly formed in oxide materials. However, the main charge transport in the HRS is governed with modified activated behavior, which is obvious from the antisymmetric, reversible I–V characteristic following \(I=aV\exp [(-E_A+b|V|)/k_BT]\) where a, b and \(E_A\) are constants. The exponential term corresponds to charge generation by field-enhanced thermal activation process, whereas the linear term is related to mobility.

References

  1. 1.
    A. Fert, Rev. Mod. Phys. 80, 1517 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, D. Mauri, Phys. Rev. B 43, 1297 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    A. Brataas, D.A. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    L. Berger, Phys. Rev. B 54, 9353 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    R. Waser, M. Aono, Nature 6, 833 (2007)CrossRefGoogle Scholar
  10. 10.
    E. Linn, R. Rosezin, C. Kügeler, R. Waser, Nat. Mater. 9, 403 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J.J. Yang, D.B. Strukov, D.R. Srewart, Nat. Nanotech. 8, 13 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    D. Lee, J. Woo, E. Cha, S. Park, S. Lee, J. Park, H. Hwang, IEEE Electron Device Lett. 34, 1250 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D. Lee, J. Woo, S. Park, E. Cha, S. Lee, H. Hwang, Appl. Phys. Lett. 104, 083507 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Srewart, R.S. Williums, Nat. Nanotech. 3, 429 (2008)CrossRefGoogle Scholar
  15. 15.
    J.J. Yang, PJohn Strachan, Q. Xia, D.A.A. Ohlberg, P.J. Kuekes et al., Adv. Mat. 22, 4034 (2010)CrossRefGoogle Scholar
  16. 16.
    K.J. Yoon, M.H. Lee, G.H. Kim, S.J. Song, J.Y. Seok et al., Nanotechnology 23, 185202 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D.S. Jeong, H. Schroeder, R. Waser, Nanotechnology 20, 375201 (2009)CrossRefGoogle Scholar
  18. 18.
    K.M. Kim, G.H. Kim, S.J. Song, J.Y. Seok, M.H. Lee et al., Nanotechnology 21, 305203 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    L.W. Feng, C.Y. Chang, Y.F. Chang, W.R. Chen, S.Y. Wang et al., Appl. Phys. Lett. 96, 052111 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J.S. Choi, J.-S. Kim, I.R. Hwang, S.H. Hong, S.H. Jeon et al., Appl. Phys. Lett. 95, 022109 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    H.S. Lee, J.A. Bain, S. Choi, P.A. Salvador, Appl. Phys. Lett. 90, 202107 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    C. Rossel, G.I. Meijer, D. Brémaud, D. Widmer, J. Appl. Phys. 90, 2892 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 139 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Jin-Woo Han, M. Meyyappan, AIP Adv. 1, 032162 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Takeshi Yanagida, Kazuki Nagashima, Keisuke Oka, Masaki Kanai, Annop Klamchuen, Bae Ho Park, Tomoji Kawai, Sci. Rep. 3, 1657 (2013)ADSGoogle Scholar
  26. 26.
    Krzysztof Szot, Wolfgang Speier, Gustav Bihlmayer, Rainer Waser, Nat. Mater. 5, 312 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Deok-kee Kim, Ho Sun Shin, Jae Yong Song, Appl. Phys. Express 5, 085001 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Lars Dugaiczyk, Tam-Triet Ngo-Duc, Jovi Gacusan, Karandeep Singh, Jonathan Yang et al., Chem. Phys. Lett. 575, 112 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Kazuki Nagashima, Takeshi Yanagida, Keisuke Oka, Masateru Taniguchi, Tomoji Kawai, Jin-Soo Kim, Bae Ho Park, Nano Lett. 10, 1359 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Lijie Li, Yan Zhang, Zhengjun Chew, Nano-Micro Lett. 5, 159 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Gayen, M.K. Sanyal, B. Satpati, A. Rahman, Appl. Phys. A 112, 775 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    O. Mitrofanov, M. Manfra, J. Appl. Phys. 95, 6414 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    J.G. Simmons, Phys. Rev. 155, 657 (1967)ADSCrossRefGoogle Scholar
  34. 34.
    A. Rose, Phys. Rev. 97, 1538 (1955)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Lampert, Phys. Rev. 103, 1648 (1956)ADSCrossRefGoogle Scholar
  36. 36.
    M.P. Delmo, S. Yamamoto, S. Kasai, T. Ono, K. Kobayashi, Nature 457, 1112 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    J.G. Simmons, R.R. Verderber, Proc. R. Soc. Lond. Ser. A 301, 77 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sirshendu Gayen
    • 1
  • Milan K. Sanyal
    • 1
  • Abhisakh Sarma
    • 1
  • Biswarup Satpati
    • 1
  1. 1.Surface Physics and Material Science DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations