Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery

Abstract

An Eighteenth Dynasty Egyptian sealed pottery stored at the Museum of Aquitaine (Bordeaux, France) has been investigated using terahertz radiation, X-rays and neutrons. THz computed tomography revealed nondestructively the presence of content, whereas X-rays and neutrons analyzed more precisely the fabrication process and conservation of the pottery together with the nature of this content owing to higher spatial resolution and contrast. With neutron tomography, we determined the method used to seal the jar as well as the finer structure of the inner content. Neutron-induced prompt gamma spectroscopy was finally applied to measure the elemental composition of the content, which is supposed to consist of dried germinated seeds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J. Banhart John (Ed.) Advanced tomographic methods in materials research and engineering (Oxford University Press, ISBN 978–0–19–921324–5, 2008)

  2. 2.

    C. Calza, M.J. Anjos, S.M.F. Mendonça de Souza, A. Brancaglion Jr, R.T. Lopes, Nucl. Instr. Meth. B 263, 249–252 (2007)

    Article  ADS  Google Scholar 

  3. 3.

    O. Hahn, Stud. Conserv. 50, 23 (2005)

    Article  Google Scholar 

  4. 4.

    M.J. Aitken, Thermoluminescence Dating (Academic Press, London, 1985)

    Google Scholar 

  5. 5.

    I.A. Anderson, R.L. McGreevy, H.Z. Bilheux (Eds), Neutron imaging and applications: a reference for the imaging community (Springer, ISBN 978-0-387-78692-6, 2009)

  6. 6.

    E. Deschler-Erb, E.H. Lehmann, L. Pernet, P. Vontobel, S. Hartmann, Archaeometry 46(4), 647 (2004)

    Article  Google Scholar 

  7. 7.

    E.H. Lehmann, S. Hartmann, M.O. Speidel, Archaeometry 52(3), 416 (2010)

    Article  Google Scholar 

  8. 8.

    J.B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, K. Fukunaga, IEEE Trans. Terahertz. Sci. Technol. 1(1), 220 (2011)

    Article  Google Scholar 

  9. 9.

    L. Ohrström, A. Bitzer, M. Walther, F.J. Rühli, Am. J. Phys. Anthropol. 142(3), 497 (2010)

    Article  Google Scholar 

  10. 10.

    J. Labaune, J.B. Jackson, S. Pagès-Camagna, I.N. Duling, M. Menu, G.A. Mourou, Appl. Phys. A 100(3), 607 (2010)

    Article  ADS  Google Scholar 

  11. 11.

    J. Labaune, J.B. Jackson, K. Fukunaga, J. White, L. D’ Alessandro, A. Whyte, M. Menu, G.A. Mourou, Appl. Phys. A 105(1), 5 (2011)

    Article  ADS  Google Scholar 

  12. 12.

    K. Fukunaga, E. Cortes, A. Cosentino, I. Stünkel, M. Leona, I.N. Duling III, D.T. Mininberg, J. Eur. Opt. Soc. Rapid Commun. 6, 11040 (2011)

    Article  Google Scholar 

  13. 13.

    F. Saragoza, Revue archéologique de Bordeaux, tome IC, p.131 (French) (2008)

  14. 14.

    M. Bessou, H. Duday, J.-P. Caumes, S. Salort, B. Chassagne, A. Dautant, A. Ziéglé, E. Abraham, Opt. Commun. 285, 4175 (2012)

    Article  ADS  Google Scholar 

  15. 15.

    G.N. Hounsfield, J. Comput. Assist. Tomogr. 4, 665 (1980)

    Article  Google Scholar 

  16. 16.

    N. Kardjilov, Sci. Rev. 11(1), 15 (2006)

    Google Scholar 

  17. 17.

    K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Opt. Express 11, 2549 (2003)

    Article  ADS  Google Scholar 

  18. 18.

    B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, E. Abraham, Opt. Express 19, 5105 (2011)

    Article  ADS  Google Scholar 

  19. 19.

    B. Ferguson, S. Wang, D. Gray, D. Abbot, X.C. Zhang, Opt. Lett. 27, 1312 (2002)

    Article  ADS  Google Scholar 

  20. 20.

    A. Brahm, M. Kunz, S. Riehemann, G. Notni, A. Tunnermann, Appl. Phys. B 100, 151 (2010)

    Article  ADS  Google Scholar 

  21. 21.

    G.T. Herman, image reconstruction from projections: the fundamentals of computerized tomography (Academic Press Inc., 1980)

  22. 22.

    M.P. Morigi, F. Casali, M. Bettuzzi, R. Brancaccio, V.D. Errico, Appl. Phys. A 100, 653 (2010)

    Article  ADS  Google Scholar 

  23. 23.

    www.gehealthcare.com

  24. 24.

    L. Szentmiklósi, Z. Kis, T. Belgya, Zs. Révays, Prompt gamma activation imaging at the Budapest research reactor, in Report of the IAEA-F1-TM-40776 Catalogue of Products and Services of Research Reactors: Applications of Neutron Beams 5-7 September 2011, IAEA, Vienna, Austria (ed. D. Ridikas)

  25. 25.

    www.advancedphotonix.com/thzsolutions/, www.teraview.com/

Download references

Acknowledgments

The authors gratefully acknowledge François Hubert, director of the Museum of Aquitaine, and the city of Bordeaux for the authorization to perform the measurements at the museum. They also thank R. Trouette, M. Montaudon and J.B. Boutolleau from the radiotherapy centre at the Haut-Lévêque Hospital (Bordeaux) for X-ray measurements, P. Decout and T. Solaire from General Electric Healthcare for the X-ray data reconstruction. This project has been supported by the CHARISMA project (Contract 228330) and the Action Interdisciplinaire de Recherche ‘Archéométrie’ (TeraScan project, CNRS, France).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Abraham.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abraham, E., Bessou, M., Ziéglé, A. et al. Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery. Appl. Phys. A 117, 963–972 (2014). https://doi.org/10.1007/s00339-014-8779-3

Download citation

Keywords

  • Neutron Beam
  • Prompt Gamma
  • Neutron Radiography
  • Neutron Imaging
  • Prompt Gamma Activation Analysis