Advertisement

Applied Physics A

, Volume 118, Issue 2, pp 675–682 | Cite as

Influence of Li+ and Nd3+ co-doping on structural and optical properties of l-arginine-passivated ZnS nanoparticles

  • S. S. Talwatkar
  • A. L. Sunatkari
  • Y. S. Tamgadge
  • V. G. Pahurkar
  • G. G. MuleyEmail author
Article

Abstract

We report the effect of Li + and Nd3+ co-doping on structural and optical properties of l-arginine-passivated ZnS nanoparticles (NPs) synthesized by chemical co-precipitation method. High-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction study were used to explore the morphological and structural aspects of prepared NPs. HR-TEM analysis confirmed that the size of ZnS NPs reduces from 5 to 3 nm as the concentration of co-dopant increases from 1 to 5 wt%. Ultraviolet–visible absorption spectra show absorption peaks in the range of 295–315 nm indicating huge blue shift as compared to the bulk ZnS (340 nm, E g = 3.6 eV) due to the quantum confinement effect. The large optical band gap was estimated in the range of 3.95–4.62 eV and found increasing as the co-dopant concentration increases. Photoluminescence spectra showed that co-doped ZnS NPs emit multiple intense violet-colored (370, 375, 380, 388 and 398 nm) and blue-colored (425, 448, 455 and 465 nm) peaks with increasing intensity. Fourier transform infrared study confirmed the strong interaction between ZnS NPs and l-arginine ligands. The presence of co-dopant in the sample is confirmed by energy dispersive X-ray analysis. Based on the results, we proposed that this material is a new class of luminescent material suitable in optoelectronics devices application, especially in light-emitting devices, electroluminescent devices, display devices, etc.

Keywords

Quantum Confinement Effect NdCl3 Effective Mass Approximation Neodymium Oxide Linear Optical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are thankful to the Director, SAIF facility, IIT-Bombay for providing FTIR, HR-TEM and EDAX facility and the Chairman, DST-FIST, SGB Amravati University for providing XRD and PL facility.

References

  1. 1.
    L. Brus, Acc. Chem. Res. 23, 183 (1990)CrossRefGoogle Scholar
  2. 2.
    D. Kim, K. Min, J. Lee, J. Park, J. Chun, Mater. Sci. Eng. B 131, 13 (2006)CrossRefGoogle Scholar
  3. 3.
    C. Yang, Q. Jiang, Mater. Sci. Eng. B 131, 191 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Mohanta, G. Ahmed, A. Choudhury, F. Singh, D. Avasthi, J. Nanopart. Res. 8, 645 (2006)CrossRefGoogle Scholar
  5. 5.
    H. Warad, S. Ghosh, B. Hemtanon, C. Thanachayanont, J. Dutta, Sci. Technol. Adv. Mater. 6, 296 (2005)CrossRefGoogle Scholar
  6. 6.
    R. Bhargava, J. Lumin. 70, 85 (1996)CrossRefGoogle Scholar
  7. 7.
    W. Chen, S. Nie, Science 281, 2016 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    F. Parsapour, D. Kelley, S. Craft, J. Wilcoxon, J. Chem. Phys. 104, 4978 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    X. Li, Z. Chen, G. Du, N. Chen, Q. Yu, Mater. Sci. Eng. B 178, 917 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Thiel, T. Bottger, R. Cone, J. Lumin. 131, 353 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    L. Wang, S. Huang, Y. Sun, Appl. Surf. Sci. 270, 178 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    W. Becker, A. Bard, J. Phys. Chem. 87, 4888 (1983)CrossRefGoogle Scholar
  14. 14.
    W. Peng, G. Cong, S. Qu, Z. Wang, Opt. Mater. 29, 313 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    A. Khosravi, M. Kundu, B. Kuruvilla, G. Shekhawat, R. Gupta, A. Sharma, P. Vyas, S. Kulkarni, Appl. Phys. Lett. 67, 2506 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    J. Xu, W. Ji, J. Lin, S. Tang, Y. Du, Appl. Phys. A 66, 639 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    S. Rai, L. Bokatial, P. Dihingia, J. Lumin. 131, 978 (2011)CrossRefGoogle Scholar
  18. 18.
    P.J. Dihingia, S. Rai, J. Lumin. 132, 1243 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Zheng, D. Gao, Z. Fu, E. Wang, Y. Lei, Y. Tuan, M. Cui, J. Lumin. 131, 423 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Hu, W. Zhang, Opt. Mater. 28, 536 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    A. Bol, A. Meijerink, J. Phys. Chem. B 105, 10197 (2001)CrossRefGoogle Scholar
  22. 22.
    T. Kezaka, M. Konishi, T. Isobe, M. Senna, J. Lumin. 87–89, 418 (2000)CrossRefGoogle Scholar
  23. 23.
    I. Lenggoro, K. Okuyama, J. Mora, N. Tohge, J. Aerosol Sci. 31, 121 (2000)CrossRefGoogle Scholar
  24. 24.
    J. Zhu, M. Zhou, J. Xu, X. Liao, Mater. Lett. 47, 25 (2001)CrossRefGoogle Scholar
  25. 25.
    P. Yang, M. Lu, D. Xu, D. Yuan, G. Zhou, Chem. Phys. Lett. 336, 76 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Hsiao, T. Meen, L. Ji, J. Tsai, Y. Wu, C. Huang, J. Phys. Chem. Solids 74, 1403 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    J. Tauc (ed.) Optical properties of amorphous semiconductors. Amorphous and liquid semiconductors, Springer, US, 1974. 159–220Google Scholar
  28. 28.
    L. Brus, J. Chem. Phys. 80, 4403 (1984)ADSCrossRefGoogle Scholar
  29. 29.
    A. Ziabari, F. Ghodsi, J. Lumin. 141, 121 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Kanemitsu, A. Ishizumi, J. Lumin. 119–120, 161 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Tanaka, J. Lumin. 100, 163 (2002)CrossRefGoogle Scholar
  32. 32.
    Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng, Chem. Phys. Lett. 357, 314 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    P. Yang, M. Lü, D. Xü, D. Yuan, G. Zhou, Appl. Phys. A 73, 455 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    H. Yang, L. Yu, L. Shen, L. Wang, J. Mater. Lett. 58, 1172 (2004)CrossRefGoogle Scholar
  35. 35.
    S. Xu, S. Chua, B. Liu, L. Gan, C. Chew, G. Xu, Appl. Phys. Lett. 73, 478 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    P. Yang, M. Lü, D. Yuan, C. Song, S. Liu, X. Cheng, J. Opt. Mater. 24, 497 (2003)CrossRefGoogle Scholar
  37. 37.
    L. Sun, C. Yan, C. Liu, C. Liao, D. Li, J. Yu, J. Alloys. Compd. 234, 257 (1998)Google Scholar
  38. 38.
    Z.L. Wang et al. (eds.), Handbook of Nanophase and Nanostructured Materials Synthesis, Tsinghua University Press, Kluwer Academic/Plenum Publishers, 2002Google Scholar
  39. 39.
    S. Lu, B. Lee, Z. Wang, W. Tong, B. Wagner, W. Park, C. Summers, J. Lumin. 92, 73 (2001)CrossRefGoogle Scholar
  40. 40.
    S. Lunt, G. Ryba, P. Santangelo, N. Lewis, J. Appl. Phys. 70, 7449 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    D.R. Jung, J. Kim, B. Park, Appl. Phys. Lett. 96, 211908 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn. (Wiley, UK, 2004)Google Scholar
  43. 43.
    J. Zhang, Optical Properties and Spectroscopy of NPs (World Scientific Publishing co. pte. Ltd., Singapore, 2007)Google Scholar
  44. 44.
    G. Muley, M. Rode, B. Pawar, Acta Phys. Pol., A 116, 1033 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. S. Talwatkar
    • 1
  • A. L. Sunatkari
    • 2
  • Y. S. Tamgadge
    • 3
  • V. G. Pahurkar
    • 4
  • G. G. Muley
    • 4
    Email author
  1. 1.Department of PhysicsN. G. Aacharya and D.K. Marathe College of Arts, Science and CommerceChembur, MumbaiIndia
  2. 2.Department of PhysicsSiddharth College of Arts, Science and CommerceFort, MumbaiIndia
  3. 3.Department of PhysicsShri Shivaji Arts, Commerce and Science CollegeAkolaIndia
  4. 4.Department of PhysicsSant Gadge Baba Amravati UniversityAmravatiIndia

Personalised recommendations