Skip to main content

I-band-like non-dispersive inter-shell interaction induced Raman lines in the D-band region of double-walled carbon nanotubes

Abstract

Non-dispersive, inter-layer interaction induced Raman peaks (I bands)—in the region of the D band—have been observed recently for bilayer graphene, when the two layers were rotated with respect to each other. Here, similar observations for double-walled carbon nanotubes are theoretically predicted. The prediction is based on double resonance theory, involving non-zone-centered phonons, and the effect of disorder is replaced by interaction between the two tubes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000)

    Article  ADS  Google Scholar 

  2. J. Kürti, V. Zólyomi, A. Grüneis, H. Kuzmany, Double resonant Raman phenomena enhanced by Van Hove singularities in single-wall carbon nanotubes. Phys. Rev. B 65, 165433 (2002)

    Article  ADS  Google Scholar 

  3. P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84, 035433 (2011)

    Article  ADS  Google Scholar 

  4. V. Zólyomi, J. Koltai, J. Kürti, Resonance Raman spectroscopy of graphite and graphene. Phys. Status Solidi B 248, 2435–2444 (2011)

    Article  ADS  Google Scholar 

  5. R. Martin, L. Falicov, Resonant raman scattering. In Light Scattering in Solids I: Topics in Applied Physics, vol. 8 (Springer, Berlin, 1983), pp. 79–145

  6. J. Laudenbach, F. Hennrich, H. Telg, M. Kappes, J. Maultzsch, Resonance behavior of the defect-induced Raman mode of single-chirality enriched carbon nanotubes. Phys. Rev. B 87, 165423 (2013)

    Article  ADS  Google Scholar 

  7. A.K. Gupta, Y. Tang, V.H. Crespi, P.C. Eklund, Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B 82, 241406(R) (2010)

    Article  ADS  Google Scholar 

  8. A. Righi, S.D. Costa, H. Chacham, C. Fantini, P. Venezuela, C. Magnuson, L. Colombo, W.S. Bacsa, R.S. Ruoff, M.A. Pimenta, Graphene Moiré patterns observed by umklapp double-resonance Raman scattering. Phys. Rev. B 84, 241409(R) (2011)

    Article  ADS  Google Scholar 

  9. W. Plank, R. Pfeiffer, C. Schaman, H. Kuzmany, M. Calvarasi, F. Zerbetto, J. Meyer, Electronic structure of carbon nanotubes with ultrahigh curvature. ACS Nano 4, 4515 (2010)

    Article  Google Scholar 

  10. X. Liu, H. Kuzmany, T. Saito, T. Pichler, Temperature dependence of inner tube growth from ferrocene-filled single-walled carbon nanotubes. Phys. Status Solidi B 248, 2492–2495 (2011)

    Article  ADS  Google Scholar 

  11. H. Kuzmany, private communication (2013)

  12. V. Zólyomi, J. Koltai, J. Kürti, H. Kuzmany, Phonons of single walled carbon nanotubes. In DFT Calculations on Fullerenes and Carbon Nanotubes, ed. by V. Basiuk, S. Irle (Signpost Publisher, Kerala, 2008)

    Google Scholar 

  13. J. Koltai, V. Zólyomi, J. Kürti, Phonon dispersion of small diameter semiconducting chiral carbon nanotubes: a theoretical study. Phys. Status Solidi B 245, 2137–2140 (2008)

    Article  ADS  Google Scholar 

  14. Á. Rusznyák, J. Koltai, V. Zólyomi, J. Kürti, Using line group theory for the symmetry assignment of the phonons of single walled carbon nanotubes. Phys. Status Solidi B 2456, 2614–2617 (2009)

    Article  ADS  Google Scholar 

  15. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Basic Concepts and Physical Properties (Wiley, Weinheim, 2004)

    Google Scholar 

  16. E. Dobardzić, I. Milošević, T. Nikolić, T. Vuković, M. Damnjanović, Single-wall carbon nanotubes phonon spectra: symmetry-based calculations. Phys. Rev. B 68, 045408 (2003)

    Article  ADS  Google Scholar 

  17. M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović, Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes. Phys. Rev. B 60, 2728–2739 (1999)

    Article  ADS  Google Scholar 

  18. V. Zólyomi, J. Kürti, First-principes calculatios for the electronic band structure of small diameter single-wall carbon nanotubes. Phys. Rev. B 70, 085403 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Support from the Hungarian National Research Fund (OTKA), Grant Numbers K81492 and K108676 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenő Kürti.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyimesi, B., Koltai, J., Zólyomi, V. et al. I-band-like non-dispersive inter-shell interaction induced Raman lines in the D-band region of double-walled carbon nanotubes. Appl. Phys. A 118, 587–593 (2015). https://doi.org/10.1007/s00339-014-8762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8762-z

Keywords