Skip to main content

Advertisement

Log in

Motion characteristics and output voltage analysis of micro-vibration energy harvester based on diamagnetic levitation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the force analysis and output performance of the micro-vibration energy harvester are elaborated. The force of the floating magnet in the magnetic field of the lifting magnet is firstly analyzed. Using COMSOL™, the change of magnetic force exerted on the floating magnet versus the vertical distance and the horizontal eccentric distance is obtained for different lifting magnets of a cylinder, a ring and an inner cylinder plus an outer ring, respectively. When the distance between the lifting and floating magnets ranges from 7.3 to 8.1 mm, the change rate of the magnetic force versus the vertical distance for the inner cylinder plus outer ring structure is the smallest, whose value is 619 µN/mm. In other words, if the inner cylinder plus outer ring structure is used as the lifting magnet, the vibration space of the floating magnet is the largest, which is 8 and 7.6 % larger than the cylinder and ring lifting magnets, respectively. The horizontal restoring forces of the three structures are substantially equal to each other at the horizontal eccentric distance of 4 mm, which is around 860 µN. Then the equilibrium position change of the floating magnet is discussed when the energy harvester is in an inclined position. Finally, by the analysis of the vibration model, the output performances of the energy harvester are comparatively calculated under the vertical and inclined positions. At the natural frequency of 6.93 Hz, the maximum power of 66.7 µW is generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Su, Z. Duan, Micronanoelectron. Technol. 50, 156 (2013). (in chinese)

    Google Scholar 

  2. J. Park, S. Lee, B.M. Kwak, J. Mech. Sci. Technol. 26, 137 (2012)

    Article  Google Scholar 

  3. S. Korla, R.A. Leon, I.N. Tansel, Microelectron. J. 42, 265 (2011)

    Article  Google Scholar 

  4. C. Lee, Y.M. Lim, B. Yang et al., Sens. Actuators A Phys. 156, 208 (2009)

    Article  Google Scholar 

  5. Y. Zhu, S.R. Moheimani, M.R. Yuce, in Proceedings of IEEE Sensors, (2009) p. 1545

  6. P. Wang et al., Microelectron. J. 43, 154 (2012)

    Article  Google Scholar 

  7. A. Munaz, B.C. Lee, G.S. Chung, Sens. Actuators A Phys. 201, 134 (2013)

    Article  Google Scholar 

  8. N.N.H. Ching, H.Y. Wong, W.J. Li et al., Sens. Actuators A Phys. 97, 685 (2002)

    Article  Google Scholar 

  9. C. Shearwood, R.B. Yates, Electron. Lett. 33, 1883 (1997)

    Article  Google Scholar 

  10. I. Sari, T. Balkan, H. Külah, J. Microelectromech. Syst. 19, 14 (2010)

    Article  Google Scholar 

  11. H. Külah, K. Najafi, IEEE Sens. J. 8, 261 (2008)

    Article  Google Scholar 

  12. S.P. Beeby, R.N. Torah, M.J. Tudor et al., J. Micromech. Microeng. 17, 1257 (2007)

    Article  ADS  Google Scholar 

  13. B.P. Mann, N.D. Sims, J. Sound Vib. 319, 515 (2009)

    Article  ADS  Google Scholar 

  14. S. Earnshaw, Trans. Camb. Philos. Soc. 7, 97 (1842)

    ADS  Google Scholar 

  15. M.V. Berry, A.K. Geim, Eur. J. Phys. 18, 307 (1997)

    Article  MathSciNet  Google Scholar 

  16. M.D. Simon, L.O. Heflinger, A.K. Geim, Am. J. Phys. 69, 702 (2001)

    Article  ADS  Google Scholar 

  17. J.E. Hirsch, J. Supercond. Nov. Magn. 26, 2230 (2013)

    Article  Google Scholar 

  18. L. Lei, F.G. Yuan, Appl. Phys. Lett. 332, 45 (2011)

    Google Scholar 

  19. G. Küstler, I.V. Nemoianu, E. Cazacu, IEEE Trans. Magn. 48, 4793 (2012)

    Article  ADS  Google Scholar 

  20. C. Siyambalapitiya, G.D. Pasquale, A. Somà, Smart Struct. Syst. 10, 181 (2012)

    Article  Google Scholar 

  21. X.Y. Wang, S. Palagummi, L. Liu, F.G. Yuan, Smart Mater. Struct. 22, 055016 (2013)

    Article  ADS  Google Scholar 

  22. L. Su, Y. Su, Micronanoelectron. Technol. 50, 770 (2013). (in chinese)

    Google Scholar 

  23. S. Guo, Electrodynamics, 2nd edn. (Higher Education Press, Beijing, 2008), pp. 107–110. (in chinese)

    Google Scholar 

  24. D. Vokoun, M. Beleggia, Heller, L.P. Sittner, J. Magn. Magn. Mater. 321, 3758 (2009)

    Article  ADS  Google Scholar 

  25. R. Shao, Mechanical System Dynamics, 1st edn. (Machinery Industry Press, Beijing, 2005), pp. 31–33. (in chinese)

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by Natural Science Foundation of China (grant number 51175479), Chinese Scholarship Council (Grant Number 201208410059) and Educational Department of Henan Province, China (Grant Number and 13A460725). K. Takahata is supported by the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Duan, Z., Takahata, K. et al. Motion characteristics and output voltage analysis of micro-vibration energy harvester based on diamagnetic levitation. Appl. Phys. A 118, 91–100 (2015). https://doi.org/10.1007/s00339-014-8747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8747-y

Keywords

Navigation