Applied Physics A

, Volume 118, Issue 1, pp 381–387 | Cite as

Origin of improved stability in green phosphorescent organic light-emitting diodes based on a dibenzofuran/spirobifluorene hybrid host

  • Lei Zhang
  • Shou-Cheng Dong
  • Chun-Hong Gao
  • Xiao-Bo Shi
  • Zhao-Kui WangEmail author
  • Liang-Sheng LiaoEmail author


A highly efficient and stable green phosphorescent organic light-emitting diode (PHOLED) was fabricated by using a new dibenzofuran/spirobifluorene hybrid material (named as DBFSF2) as the host material. The DBFSF2-based PHOLEDs exhibited slightly better electroluminescence efficiency than that in the conventional host material 4,4′-bis(carbazol-9-yl)biphenyl (CBP)-based ones. Moreover, further studies demonstrated that the DBFSF2-based PHOLEDs had a better stability with about 1.5 times improvement in half lifetime compared with that of CBP-based ones. To investigate the mechanism behind the enhanced stability in the DBFSF2-based PHOLEDs, the evaluations of dark spots growth, film crystallization properties and carrier recombination zone were carried out.


Acac High Occupied Molecular Orbital Current Efficiency Host Material Triplet Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from the Natural Science Foundation of China (Nos. 61036009, 61177016, 21161160446, and 61307036), the National High-Tech Research Development Program (No. 2011AA03A110), the Natural Science Foundation of Jiangsu Province (No. BK2010003, BK20130288), and the Key University Science Research Project of Jiangsu Province (12KJB510028). This is also a project funded by Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and by the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions.

Supplementary material

339_2014_8746_MOESM1_ESM.docx (152 kb)
Supplementary material 1 (DOCX 152 kb)


  1. 1.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature 459, 234 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B.H. Hong, J.-H. Ahn, T.-W. Lee, Nat. Photonics 6, 105 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    S.O. Jeon, S.E. Jang, H.S. Son, J.Y. Lee, Adv. Mater. 23, 1436 (2011)CrossRefGoogle Scholar
  5. 5.
    Y.-J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, J. Kido, Adv. Mater. 24, 1765 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Xiao, S.-J. Su, Y. Agata, H. Lan, J. Kido, Adv. Mater. 21, 1271 (2009)CrossRefGoogle Scholar
  7. 7.
    Z. Liu, M.F. Qayyum, C. Wu, M.T. Whited, P.I. Djurovich, K.O. Hodgson, B. Hedman, E.I. Solomon, M.E. Thompson, J. Am. Chem. Soc. 133, 3700 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Chi, P.-T. Chou, Chem. Soc. Rev. 39, 638 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Adachi, R. Kwong, S.R. Forrest, Org. Electron. 2, 37 (2001)CrossRefGoogle Scholar
  10. 10.
    C. Adachi, M.A. Baldo, S.R. Forrest, M.E. Thompson, Appl. Phys. Lett. 77, 904 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Q.S. Zhang, Q.G. Zhou, Y.X. Cheng, L.X. Wang, D.G. Ma, X.B. Jing, F.S. Wang, Adv. Mater. 16, 43 (2004)Google Scholar
  12. 12.
    A. Chaskar, H.-F. Chen, K.-T. Wong, Adv. Mater. 23, 3876 (2011)CrossRefGoogle Scholar
  13. 13.
    S.O. Jeon, J.Y. Lee, J. Mater. Chem. 22, 4233 (2012)CrossRefGoogle Scholar
  14. 14.
    W.-Y. Hung, T.-C. Wang, H.-C. Chiu, H.-F. Chen, K.-T. Wong, Phys. Chem. Chem. Phys. 12, 10685 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Gong, Q. Fu, Q. Wang, C. Yang, C. Zhong, J. Qin, D. Ma, Adv. Mater. 23, 4956 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Sasabe, Y. Seino, M. Kimura, J. Kido, Chem. Mater. 24, 1404 (2012)CrossRefGoogle Scholar
  17. 17.
    Z. Jiang, X. Xu, Z. Zhang, C. Yang, Z. Liu, Y. Tao, J. Qin, D. Ma, J. Mater. Chem. 19, 7661 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 40, 2943 (2011)CrossRefGoogle Scholar
  19. 19.
    C.H. Gao, S.D. Cai, W. Gu, D.Y. Zhou, Z.K. Wang, L.S. Liao, ACS Appl. Mater. Interfaces 4, 5211 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Brunner, A. Van Dijken, H. Boerner, J.J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, J. Am. Chem. Soc. 126, 6035 (2004)CrossRefGoogle Scholar
  21. 21.
    A. vanDijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel and K. Brunner, J. Am. Chem. Soc. 126, 7718 (2004)Google Scholar
  22. 22.
    M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 75, 4 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    S.C. Dong, C.H. Gao, Z.H. Zhang, Z.Q. Jiang, S.T. Lee, L.S. Liao, Phys. Chem. Chem. Phys. 14, 14224 (2012)CrossRefGoogle Scholar
  24. 24.
    Z.B. Wang, M.G. Helander, J. Qiu, D.P. Puzzo, M.T. Greiner, Z.W. Liu, Z.H. Lu, Appl. Phys. Lett. 98, 073310 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S.O. Jeon, J.Y. Lee, J. Mater. Chem. 22, 10537 (2012)CrossRefGoogle Scholar
  26. 26.
    P.A. Vecchi, A.B. Padmaperuma, H. Qiao, L.S. Sapochak, P.E. Burrows, Org. Lett. 8, 4211 (2006)CrossRefGoogle Scholar
  27. 27.
    L.-S. Cui, S.-C. Dong, Y. Liu, Q. Li, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem. C 1, 3967 (2013)CrossRefGoogle Scholar
  28. 28.
    Z.B. Wang, M.G. Helander, Z.W. Liu, M.T. Greiner, J. Qiu, Z.H. Lu, Appl. Phys. Lett. 96, 043303 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    D. Song, S. Zhao, Y. Luo, H. Aziz, Appl. Phys. Lett. 97, 243304 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    S.D. Cai, C.H. Gao, D.Y. Zhou, W. Gu, L.S. Liao, ACS Appl. Mater. Interfaces 4, 312 (2012)CrossRefGoogle Scholar
  31. 31.
    F. So, D. Kondakov, Adv. Mater. 22, 3762 (2010)CrossRefGoogle Scholar
  32. 32.
    H. Murata, C.D. Merritt, H. Inada, Y. Shirota, Z.H. Kafafi, Appl. Phys. Lett. 75, 3252 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Shirota, K. Okumoto, H. Inada, Synth. Met. 111, 387 (2000)CrossRefGoogle Scholar
  34. 34.
    K. Okumoto, T. Ohara, T. Noda, Y. Shirota, Synth. Met. 121, 1655 (2001)CrossRefGoogle Scholar
  35. 35.
    Y. Hamada, T. Sano, K. Shibata, K. Kuroki, Jpn. J. Appl. Phys. 34, L824 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    A.W. Denier van der Gon, J. Birgerson, M. Fahlman, W.R. Salaneck, Org. Electron. 3, 111 (2002)CrossRefGoogle Scholar
  37. 37.
    J. McElvain, H. Antoniadis, M.R. Hueschen, J.N. Miller, D.M. Roitman, J. Appl. Phys. 80, 6002 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    N. Matsusue, S. Ikame, Y. Suzuki, H. Naito, Appl. Phys. Lett. 85, 4046 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Functional Nano and Soft Materials (FUNSOM)Soochow UniversitySuzhouChina

Personalised recommendations