Skip to main content
Log in

Nanoscale electron beam-induced deposition and purification of ruthenium for extreme ultraviolet lithography mask repair

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

One critical area for the adoption of extreme ultraviolet (EUV) lithography is the development of appropriate mask repair strategies. To this end, we have explored focused electron beam-induced deposition of the ruthenium capping or protective layer. Electron beam-induced deposition (EBID) was used to deposit a ruthenium capping/protective film using the liquid bis(ethylcyclopentyldienyl)ruthenium(II) precursor. The carbon to ruthenium atomic ratio in the as-deposited material was estimated to be ~9/1. Subsequent to deposition, we demonstrate an electron stimulated purification process to remove carbon by-products from the deposit. Results indicate that high-fidelity nanoscale ruthenium repairs can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol., B 26(4), 1197 (2008)

    Article  Google Scholar 

  2. S.J. Randolph, J.D. Fowlkes, P.D. Rack, CRC Crit. Rev. Solid State 31(3), 55 (2006)

    Article  Google Scholar 

  3. M.G. Lassiter, T. Liang, P.D. Rack, J. Vac. Sci. Technol. B 26(3), 963 (2008)

    Article  Google Scholar 

  4. T. Liang, E. Frendberg, B. Lieberman, A. Stivers, J. Vac. Sci. Technol., B 23(6), 3101 (2005)

    Article  Google Scholar 

  5. M. Waiblinger, T. Bret, R. Jonckheere, D. Van den Heuvel, Ebeam Based Mask Repair as Door Opener for Defect Free EUV Masks. in Proceedings of the SPIE, vol 8522, Photomask Technology, 85221M (2012). doi:10.1117/12.966387

  6. F. Aramaki, T. Ogawa, O. Matsuda, T. Kozakai, Y. Sugiyama, H. Oba, A. Yasaka, T. Amano, H. Shigemura, O. Suga, Development of New FIB Technology for EUVL Mask Repair. in Proceedings of the SPIE 7969, Extreme Ultraviolet (EUV) Lithography II, 79691C (2011). doi:10.1117/12.879609

  7. C.M. Gonzalez, R. Timilsina, G. Li, G. Duscher, P.D. Rack, W. Slingenbergh, W.F. van Dorp, J.T.M. De Hosson, K.L. Klein, H.M. Wu, L.A. Stern, J. Vac. Sci. Technol. B 32(2), 021602 (2014)

  8. A. Lyons, R. Teki, J. Hartley. Liftoff Lithography of Metals for Extreme Ultraviolet Lithography Mask Absorber Layer Patterning. in Proceedings of the SPIE 8322, Extreme Ultraviolet (EUV) Lithography III, 83221X (2012). doi:10.1117/12.916628

  9. H. J. Levinson, P. Mangat, T. Wallow, L. Sun, P. Ackmann, S. Meyers. Considerations for high-numerical aperture EUV lithography. in Proceedings of the SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV, 867916 (2013). doi:10.1117/12.2015829

  10. J.M. Slaughter, D.W. Schulze, C.R. Hills, A. Mirone, R. Stalio, R.N. Watts, C. Tarrio, T.B. Lucatorto, M. Krumrey, P. Mueller, C.M. Falco, J. Appl. Phys. 76(4), 2144 (1994)

    Article  ADS  Google Scholar 

  11. R.S. Rosen, M.A. Viliardos, M.E. Kassner, D.G. Stearns, S.P. Vernon. Thermal Stability of Mo/Si Multilayers. in Proceedings of the SPIE 1547, Multilayer Optics for Advanced X-Ray Applications, 212 (1992). doi:10.1117/12.51281

  12. S.P. Vernon, D.G. Stearns, R.S. Rosen, Opt. Lett. 18(9), 672 (1993)

    Article  ADS  Google Scholar 

  13. J.T.W. Barbee, S. Mrowka, M.C. Hettrick, Appl. Opt. 24(6), 883 (1985)

    Article  ADS  Google Scholar 

  14. R.S. Rosen, D.G. Stearns, M.A. Viliardos, M.E. Kassner, S.P. Vernon, Y. Cheng, Appl. Opt. 32(34), 6975 (1993)

    Article  ADS  Google Scholar 

  15. A. Botman, J.J.L. Mulders, C.W. Hagen, Nanotechnology 20(37), 372001 (2009)

    Article  Google Scholar 

  16. N.A. Roberts, J.D. Fowlkes, G.A. Magel, P.D. Rack, Nanoscale 5(1), 408 (2013)

    Article  ADS  Google Scholar 

  17. N.A. Roberts, G.A. Magel, C.D. Hartfield, T.M. Moore, J.D. Fowlkes, P.D. Rack, J. Vac. Sci. Technol., A 30(4), 041404 (2012)

    Article  Google Scholar 

  18. V. Gopal, V.R. Radilovic, C. Daraio, S. Jin, P. Yang, E.A. Stach, Nano Lett. 4(11), 2059 (2004)

    Article  ADS  Google Scholar 

  19. A. Botman, J.J.L. Mulders, R. Weemaes, S. Mentink, Nanotechnology 17(15), 3779 (2006)

    Article  ADS  Google Scholar 

  20. R.M. Langford, T.X. Wang, D. Ozkaya, Microelectron. Eng. 84(5–8), 784 (2007)

    Article  Google Scholar 

  21. S. Mehendale, J.J.L. Mulders, P.H.F. Trompenaars, Nanotechnology 24(14), 145303 (2013)

    Article  ADS  Google Scholar 

  22. C. Elbadawi, M. Toth, C.J. Lobo, ACS Appl. Mater. Interfaces 5(19), 9372 (2013)

    Article  Google Scholar 

  23. R. Cordoba, J. Sese, J.M. De Teresa, M.R. Ibarra, Microelectron. Eng. 87(5–8), 1550 (2010)

    Article  Google Scholar 

  24. J.J.L. Mulders, L.M. Belova, A. Riazanova, Nanotechnology 22(05), 055302 (2011)

    Article  ADS  Google Scholar 

  25. A. Botman, M. Hesselberth, J.J.L. Mulders, Microelectron. Eng. 85(5–6), 1139 (2008)

    Article  Google Scholar 

  26. H. Plank, C. Gspan, M. Dienstleder, G. Kothleitner, F. Hofer, Nanotechnology 19(48), 485302 (2008)

    Article  Google Scholar 

  27. R.M. Langford, D. Ozkaya, J. Sheridan, R. Chater, Microsc. Microanal. 10, 1122 (2004)

    Article  Google Scholar 

  28. J. Bishop, M. Toth, M. Phillips, C. Lobo, Appl. Phys. Lett. 101(21), 211605 (2012)

    Article  ADS  Google Scholar 

  29. S. Wang, Y.-M. Sun, Q. Wang, J.M. White, J. Vac. Sci. Technol., B 22(4), 1803 (2004)

    Article  Google Scholar 

  30. M.H. Ervin, D. Chang, B. Nichols, A. Wickenden, J. Barry, J. Melngailis, J. Vac. Sci. Technol., B 25(6), 2250 (2007)

    Article  Google Scholar 

  31. M. Takeguchi, M. Shimojo, K. Furuya, Appl. Phys. A 93(2), 439 (2008)

    Article  ADS  Google Scholar 

  32. F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109(6), 063715 (2011)

    Article  ADS  Google Scholar 

  33. C.H. Schwalb, C. Grimm, M. Baranowski, R. Sachser, F. Porrati, H. Reith, P. Das, J. Muller, F. Volklein, A. Kaya, M. Huth, Sensors 10, 9847 (2010)

    Article  Google Scholar 

  34. S. Frabboni, G.C. Gazzadi, L. Felisari, A. Spessot, Appl. Phys. Lett. 88(21), 213116 (2006)

    Article  ADS  Google Scholar 

  35. V. Scheuer, H. Koops, T. Tschudi, Microelectron. Eng. 5(1–4), 423 (1986)

    Article  Google Scholar 

  36. P.D. Rack, J.D. Fowlkes, S.J. Randolph, Nanotechnology 18(46), 465602 (2007)

    Article  ADS  Google Scholar 

  37. T. Bret, I. Utke, P. Hoffmann, M. Abourida, P. Doppelt, Microelectron. Eng. 83(4–9), 1482 (2006)

    Article  Google Scholar 

  38. H. Plank, J.H. Noh, J.D. Fowlkes, K. Lester, B.B. Lewis, P.D. Rack, ACS Appl. Mater. Interfaces 6(2), 1018 (2013)

    Article  Google Scholar 

  39. J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, Dorp van WF, T.E. Madey, C.W. Hagen, D.H. Fairbrother, J. Phys. Chem. C 113(6), 2487 (2009)

    Article  Google Scholar 

  40. H. Plank, G. Kothleitner, F. Hofer, S.G. Michelitsch, C. Gspan, A. Hohenau, J. Krenn, J. Vac. Sci. Technol., B 29(05), 051801 (2011)

    Article  Google Scholar 

  41. H. Plank, D.A. Smith, T. Haber, P.D. Rack, F. Hofer, ACS Nano 6(1), 286 (2012)

    Article  Google Scholar 

  42. F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109(06), 063715 (2011)

    Article  ADS  Google Scholar 

  43. C. Hopf, M. Schlüter, T. Schwarz-Selinger, U. van Toussaint, W. Jacob, New J. Phys. 10(9), 093022 (2008)

    Article  ADS  Google Scholar 

  44. B. Geier, C. Gspan, R. Winkler, R. Schmied, J.D. Fowlkes, H. Fitzek, S. Rauch, J. Rattenberger, P.D. Rack, H. Plank, J. Phys. Chem. C 118(25), 14009 (2014)

    Article  Google Scholar 

  45. B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54(2), 181 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. HP acknowledges the support from Prof. Ferdinand Hofer and the Austrian Cooperative Research (ACR) and the Graz University of Technology in Austria. BBL acknowledges support via the University of Tennessee Chancellor’s Fellowship program. MGS acknowledges support from the National Defense Science and Engineering Graduate Fellowship funded through the AFOSR. PDR and JHN acknowledge support from Intel Corporation (and Ted Liang as program mentor) via the direct funding program at the Semiconductor Research Corporation (SRC-2012-In-2310). PDR and JDF acknowledge Cheryl Hartfield at Omniprobe, Inc. (an Oxford Instruments Company) for assistance with the OmniGIS gas injection system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Rack.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, J.H., Stanford, M.G., Lewis, B.B. et al. Nanoscale electron beam-induced deposition and purification of ruthenium for extreme ultraviolet lithography mask repair. Appl. Phys. A 117, 1705–1713 (2014). https://doi.org/10.1007/s00339-014-8745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8745-0

Keywords

Navigation