Tuning electrical parameters of graphene/p-type polycrystalline silicon Schottky diodes by ultraviolet irradiation

Abstract

The present work reports the fabrication and detailed electrical properties of graphene/p-type polycrystalline silicon (poly-Si) Schottky diodes with and without ultraviolet irradiation. Ultraviolet treatment may lead to the reduced work function of graphene, thus increasing the Schottky barrier height at the graphene/poly-Si interface. Compared to the graphene/poly-Si Schottky diodes without ultraviolet treatment, the ultraviolet-treated graphene/poly-Si Schottky diodes exhibit lower ideality factor and higher responsivity. The sensitivity of the work function of graphene to the ultraviolet irradiation time provides an opportunity to tune the electrical parameters of graphene/poly-Si Schottky diodes. The ability to controllably tune the work function of graphene is essential for optimizing the efficiency of optoelectronic and electronic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Article  Google Scholar 

  2. 2.

    J.J. Zeng, Y.J. Lin, Appl. Phys. Lett. 104, 133506 (2014)

    ADS  Article  Google Scholar 

  3. 3.

    S. Tongay, M. Lemaiyre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Phys. Rev. X 2, 011002 (2012)

    Google Scholar 

  4. 4.

    S. Tongay, T. Schumann, X. Miao, B.R. Appleton, A.F. Hebard, Carbon 49, 2033 (2011)

    Article  Google Scholar 

  5. 5.

    C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, S.B. Cronin, Nano Lett. 11, 1863 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    M. Mohammed, Z. Li, J. Cui, T. Chen, Nanoscale Res. Lett. 7, 302 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    D.T. Phan, R.K. Gupta, G.S. Chung, A.A. Al-Ghamdi, A. Omar Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, Sol. Energy 86, 2961 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    J.H. Lin, J.J. Zeng, Y.J. Lin, Thin Solid Films 550, 582 (2014)

    ADS  Article  Google Scholar 

  9. 9.

    S.K. Behura, S. Nayak, I. Mukhopadhyay, O. Jani, Carbon 67, 766 (2014)

    Article  Google Scholar 

  10. 10.

    S.K. Behura, P. Mahala, A. Ray, I. Mukhopadhyay, O. Jani, Appl. Phys. A 111, 1159 (2013)

    ADS  Article  Google Scholar 

  11. 11.

    S.K. Behura, I. Mukhopadhyay, A. Hirose, Q. Yang, O. Jani, Phys. Status Solidi A 210, 1817 (2013)

    Google Scholar 

  12. 12.

    B.W. Liou, C.L. Lee, Solid-State Electron. 44, 631 (2000)

    ADS  Article  Google Scholar 

  13. 13.

    S.A. Al Kuhaimi, Renew. Energy 14, 165 (1998)

    Article  Google Scholar 

  14. 14.

    N. Benseddik, M. Amrani, Z. Benamara, T. Mohammed-Brahim, Int. J. Nanoelectron. Mater. 2, 75 (2009)

    Google Scholar 

  15. 15.

    K.V. Chizh, V.A. Chapnin, V.P. Kalinushkin, V.Y. Resnik, M.S. Storozhevykh, V.A. Yuryev, Nanoscale Res. Lett. 8, 177 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    Y.F. Li, W. Yang, Z.Q. Tu, Z.C. Liu, F. Yang, L.Q. Zhang, R. Hatakeyama, Appl. Phys. Lett. 104, 043903 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    Y.J. Lin, J.J. Zeng, Appl. Phys. Lett. 102, 183120 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    Y.J. Lin, B.C. Huang, Y.C. Lien, C.T. Lee, C.L. Tsai, H.C. Chang, J. Phys. D Appl. Phys. 42, 165104 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    C.H. Ruan, Y.J. Lin, J. Appl. Phys. 114, 143710 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    Y.J. Lin, J. Luo, H.C. Hung, Appl. Phys. Lett. 102, 193511 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    J.J. Zeng, Y.J. Lin, Mater. Chem. Phys. 145, 250 (2014)

    Article  Google Scholar 

  22. 22.

    K. Berke, S. Tongay, M.A. McCarthy, A.G. Rinzler, B.R. Appleton, A.F. Hebard, J. Phys. Condens. Matter 24, 255802 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    A. Mooradian, Phys. Rev. Lett. 22, 185 (1969)

    ADS  Article  Google Scholar 

  24. 24.

    S.D. Costa, A. Righi, C. Fantini, Y. Hao, C. Magnuson, L. Colombo, R.S. Ruoff, M.A. Pimenta, Solid State Commun. 152, 1317 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    Y. Shem, P. Zhou, Q.Q. Sun, L. Wan, J. Li, L.Y. Chen, D.W. Zhang, X.B. Wang, Appl. Phys. Lett. 99, 141911 (2011)

    ADS  Article  Google Scholar 

  26. 26.

    Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Appl. Phys. Lett. 93, 113103 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Adv. Mater. 21, 2328 (2009)

    Article  Google Scholar 

  28. 28.

    M. Okutan, E. Basaran, F. Yakuphanoglu, Appl. Surf. Sci. 252, 1966 (2005)

    ADS  Article  Google Scholar 

  29. 29.

    Z. Luo, N.J. Pinto, Y. Davila, A.T.C. Johnson, Appl. Phys. Lett. 100, 253108 (2012)

    ADS  Article  Google Scholar 

  30. 30.

    F. Wakaya, T. Teraoka, T. Kisa, T. Manabe, S. Abo, M. Takai, Microelectronic Eng. 97, 144 (2012)

    Article  Google Scholar 

  31. 31.

    H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977)

    ADS  Article  Google Scholar 

  32. 32.

    Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9, 3430 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    P. Kumar, B. Das, B. Chitara, K.S. Subrahmanyam, K. Gopalakrishnan, S.B. Krupanidhi, C.N.R. Rao, Macromol. Chem. Phys. 213, 1146 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Ministry of Science and Technology of Taiwan (Contract nos. 102-2120-M-194-002 and 103-2112-M-018-003-MY3) in the form of Grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Lin, Y. & Chang, H. Tuning electrical parameters of graphene/p-type polycrystalline silicon Schottky diodes by ultraviolet irradiation. Appl. Phys. A 118, 361–366 (2015). https://doi.org/10.1007/s00339-014-8742-3

Download citation

Keywords

  • Work Function
  • Power Conversion Efficiency
  • Schottky Diode
  • Schottky Barrier Height
  • High Responsivity