Applied Physics A

, Volume 118, Issue 1, pp 361–366 | Cite as

Tuning electrical parameters of graphene/p-type polycrystalline silicon Schottky diodes by ultraviolet irradiation

  • Jian-Huang Lin
  • Yow-Jon LinEmail author
  • Hsing-Cheng Chang


The present work reports the fabrication and detailed electrical properties of graphene/p-type polycrystalline silicon (poly-Si) Schottky diodes with and without ultraviolet irradiation. Ultraviolet treatment may lead to the reduced work function of graphene, thus increasing the Schottky barrier height at the graphene/poly-Si interface. Compared to the graphene/poly-Si Schottky diodes without ultraviolet treatment, the ultraviolet-treated graphene/poly-Si Schottky diodes exhibit lower ideality factor and higher responsivity. The sensitivity of the work function of graphene to the ultraviolet irradiation time provides an opportunity to tune the electrical parameters of graphene/poly-Si Schottky diodes. The ability to controllably tune the work function of graphene is essential for optimizing the efficiency of optoelectronic and electronic devices.


Work Function Power Conversion Efficiency Schottky Diode Schottky Barrier Height High Responsivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the Ministry of Science and Technology of Taiwan (Contract nos. 102-2120-M-194-002 and 103-2112-M-018-003-MY3) in the form of Grants.


  1. 1.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    J.J. Zeng, Y.J. Lin, Appl. Phys. Lett. 104, 133506 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    S. Tongay, M. Lemaiyre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Phys. Rev. X 2, 011002 (2012)Google Scholar
  4. 4.
    S. Tongay, T. Schumann, X. Miao, B.R. Appleton, A.F. Hebard, Carbon 49, 2033 (2011)CrossRefGoogle Scholar
  5. 5.
    C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, S.B. Cronin, Nano Lett. 11, 1863 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mohammed, Z. Li, J. Cui, T. Chen, Nanoscale Res. Lett. 7, 302 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    D.T. Phan, R.K. Gupta, G.S. Chung, A.A. Al-Ghamdi, A. Omar Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, Sol. Energy 86, 2961 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Lin, J.J. Zeng, Y.J. Lin, Thin Solid Films 550, 582 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Behura, S. Nayak, I. Mukhopadhyay, O. Jani, Carbon 67, 766 (2014)CrossRefGoogle Scholar
  10. 10.
    S.K. Behura, P. Mahala, A. Ray, I. Mukhopadhyay, O. Jani, Appl. Phys. A 111, 1159 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Behura, I. Mukhopadhyay, A. Hirose, Q. Yang, O. Jani, Phys. Status Solidi A 210, 1817 (2013)Google Scholar
  12. 12.
    B.W. Liou, C.L. Lee, Solid-State Electron. 44, 631 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    S.A. Al Kuhaimi, Renew. Energy 14, 165 (1998)CrossRefGoogle Scholar
  14. 14.
    N. Benseddik, M. Amrani, Z. Benamara, T. Mohammed-Brahim, Int. J. Nanoelectron. Mater. 2, 75 (2009)Google Scholar
  15. 15.
    K.V. Chizh, V.A. Chapnin, V.P. Kalinushkin, V.Y. Resnik, M.S. Storozhevykh, V.A. Yuryev, Nanoscale Res. Lett. 8, 177 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Y.F. Li, W. Yang, Z.Q. Tu, Z.C. Liu, F. Yang, L.Q. Zhang, R. Hatakeyama, Appl. Phys. Lett. 104, 043903 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Y.J. Lin, J.J. Zeng, Appl. Phys. Lett. 102, 183120 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Y.J. Lin, B.C. Huang, Y.C. Lien, C.T. Lee, C.L. Tsai, H.C. Chang, J. Phys. D Appl. Phys. 42, 165104 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    C.H. Ruan, Y.J. Lin, J. Appl. Phys. 114, 143710 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Y.J. Lin, J. Luo, H.C. Hung, Appl. Phys. Lett. 102, 193511 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J.J. Zeng, Y.J. Lin, Mater. Chem. Phys. 145, 250 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Berke, S. Tongay, M.A. McCarthy, A.G. Rinzler, B.R. Appleton, A.F. Hebard, J. Phys. Condens. Matter 24, 255802 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mooradian, Phys. Rev. Lett. 22, 185 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    S.D. Costa, A. Righi, C. Fantini, Y. Hao, C. Magnuson, L. Colombo, R.S. Ruoff, M.A. Pimenta, Solid State Commun. 152, 1317 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Shem, P. Zhou, Q.Q. Sun, L. Wan, J. Li, L.Y. Chen, D.W. Zhang, X.B. Wang, Appl. Phys. Lett. 99, 141911 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Appl. Phys. Lett. 93, 113103 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Adv. Mater. 21, 2328 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Okutan, E. Basaran, F. Yakuphanoglu, Appl. Surf. Sci. 252, 1966 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Luo, N.J. Pinto, Y. Davila, A.T.C. Johnson, Appl. Phys. Lett. 100, 253108 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    F. Wakaya, T. Teraoka, T. Kisa, T. Manabe, S. Abo, M. Takai, Microelectronic Eng. 97, 144 (2012)CrossRefGoogle Scholar
  31. 31.
    H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9, 3430 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    P. Kumar, B. Das, B. Chitara, K.S. Subrahmanyam, K. Gopalakrishnan, S.B. Krupanidhi, C.N.R. Rao, Macromol. Chem. Phys. 213, 1146 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jian-Huang Lin
    • 1
  • Yow-Jon Lin
    • 1
    Email author
  • Hsing-Cheng Chang
    • 2
  1. 1.Institute of PhotonicsNational Changhua University of EducationChanghuaTaiwan
  2. 2.Department of Automatic Control EngineeringFeng Chia UniversityTaichungTaiwan

Personalised recommendations