Skip to main content
Log in

Temperature-dependent electrical properties for graphene Schottky contact on n-type Si with and without sulfide treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The temperature-dependent current–voltage (IV) characteristics of graphene/n-type Si Schottky diodes with and without sulfide treatment were measured in the temperature range of 150–420 K. The temperature dependence of forward-bias IV characteristics can be explained on the basis of the thermionic emission theory by assuming the presence of Gaussian distribution of the barrier heights. The graphene/n-type Si device with sulfide treatment exhibits a good rectifying behavior with the ideality factor of 1.8 and low leakage at 300 K. The enhanced device performance is considered to mainly come from the presence of Si–S bonds that serve to improve the Schottky barrier inhomogeneity. Compared to the fitting data for the temperature-dependent reverse-bias IV characteristics of graphene/n-type Si devices without sulfide treatment, the fitting data for the temperature-dependent reverse-bias IV characteristics of graphene/n-type Si devices with sulfide treatment show that a higher barrier height for hopping result in a lower leakage current. This is because of more homogenous barrier height for graphene/n-type Si devices with sulfide treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. S. Tongay, T. Schumann, X. Miao, B.R. Appleton, A.F. Hebard, Carbon 49, 2033 (2011)

    Article  Google Scholar 

  4. S. Tongay, M. Lemaiyre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Phys. Rev. X 2, 011002 (2012)

    Google Scholar 

  5. D. Dragoman, M. Dragoman, R. Plana, J. Appl. Phys. 108, 084316 (2010)

    Article  ADS  Google Scholar 

  6. C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, S.B. Cronin, Nano Lett. 11, 1863 (2011)

    Article  ADS  Google Scholar 

  7. M. Mohammed, Z. Li, J. Cui, T. Chen, Nanoscale Res. Lett. 7, 302 (2012)

    Article  ADS  Google Scholar 

  8. J.H. Lin, J.J. Zeng, Y.J. Lin, Thin Solid Films 550, 582 (2014)

    Article  ADS  Google Scholar 

  9. C. Yim, N. McEvoy, G.S. Duesberg. Appl. Phys. Lett. 103, 193106 (2013)

    Article  ADS  Google Scholar 

  10. X. Wang, K.Q. Peng, X.J. Pan, X. Chen, Y. Yang, L. Li, X.M. Meng, W.J. Zhang, S.T. Lee, Angew. Chem. Int. Ed. 50, 9861 (2011)

    Article  Google Scholar 

  11. D. Panda, T.Y. Tseng, Thin Solid Films 531, 1 (2013)

    Article  ADS  Google Scholar 

  12. W.M. Cho, Y.J. Lin, H.C. Chang, Y.H. Chen, Microelectron. Eng. 108, 24 (2013)

    Article  Google Scholar 

  13. S.Y. Myong, L.S. Jeon, S.W. Kwon, Thin Solid Films 550, 705 (2014)

    Article  ADS  Google Scholar 

  14. T. Tayagaki, Y. Hoshi, K. Ooi, T. Kiguchi, N. Usami, Thin Solid Films 557, 368 (2014)

    Article  ADS  Google Scholar 

  15. C.H. Ruan, Y.J. Lin, J. Appl. Phys. 114, 143710 (2013)

    Article  ADS  Google Scholar 

  16. S.C. Chen, T.C. Chang, Y.C. Wu, J.Y. Chin, Y.E. Syu, S.M. Sze, C.Y. Chang, H.H. Wu, Y.C. Chen, Thin Solid Films 518, 3999 (2010)

    Article  ADS  Google Scholar 

  17. C.C. Huang, Y.J. Lin, C.J. Liu, Y.W. Yang, Microelectron. Eng. 110, 21 (2013)

    Article  Google Scholar 

  18. Y.M. Chin, Y.J. Lin, Mater. Chem. Phys. 145, 232 (2014)

    Article  Google Scholar 

  19. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, Adv. Mater. 22, 2743 (2010)

    Article  Google Scholar 

  20. Y.J. Lin, B.C. Huang, Y.C. Lien, C.T. Lee, C.L. Tsai, H.C. Chang, J. Phys. D Appl. Phys. 42, 165104 (2009)

    Article  ADS  Google Scholar 

  21. Y.J. Lin, J.J. Zeng, Appl. Phys. Lett. 102, 183120 (2013)

    Article  ADS  Google Scholar 

  22. A. Mooradian, Phys. Rev. Lett. 22, 185 (1969)

    Article  ADS  Google Scholar 

  23. S.D. Costa, A. Righi, C. Fantini, Y. Hao, C. Magnuson, L. Colombo, R.S. Ruoff, M.A. Pimenta, Solid State Commun. 152, 1317 (2012)

    Article  ADS  Google Scholar 

  24. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Appl. Phys. Lett. 93, 113103 (2008)

    Article  ADS  Google Scholar 

  25. S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Adv. Mater. 21, 2328 (2009)

    Article  Google Scholar 

  26. J.J. Zeng, Y.J. Lin, Appl. Phys. Lett. 104, 233103 (2014)

    Article  ADS  Google Scholar 

  27. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car. Nano Lett. 8, 36 (2008)

    Article  ADS  Google Scholar 

  28. G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008)

    Article  Google Scholar 

  29. Z. Luo, N.J. Pinto, Y. Davila, A.T. Charlie, Johnson. Appl. Phys. Lett. 100, 253108 (2012)

    Article  ADS  Google Scholar 

  30. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  ADS  Google Scholar 

  31. Ş. Karataş, Ş. Altındal, Mater. Sci. Eng., B 122, 133 (2005)

    Article  Google Scholar 

  32. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, F. Cardon, G.P. Ru, X.P. Qu, B.Z. Li, Solid State Electron. 44, 663 (2000)

    Article  ADS  Google Scholar 

  33. H. Peisert, T. Chasse, P. Streubel, A. Meisel, R. Szargan, J. Electron Spectrosc. Relat. Phenom. 68, 321 (1994)

    Article  Google Scholar 

  34. G. Song, M.Y. Ali, M. Tao, Solid-State Electron. 52, 1778 (2008)

    Article  ADS  Google Scholar 

  35. F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, B. Sun, ACS Appl. Mater. Interf. 5, 4678 (2013)

    Article  Google Scholar 

  36. P.G. McCafferty, A. Sellai, P. Dawson, H. Elabd, Solid State Electron. 39, 583 (1996)

    Article  ADS  Google Scholar 

  37. I. Taşçıoğlu, U. Aydemir, Ş. Altındal, J. Appl. Phys. 108, 064506 (2010)

    Article  ADS  Google Scholar 

  38. K.C. Chang, T.M. Tsai, R. Zhang, T.C. Chang, K.H. Chen, J.H. Chen, T.F. Young, J.C. Lou, T.J. Chu, C.C. Shih, J.H. Pan, Y.T. Su, Y.E. Syu, C.W. Tung, M.C. Chen, J.J. Wu, Y. Hu, S.M. Sze, Appl. Phys. Lett. 103, 083509 (2013)

    Article  ADS  Google Scholar 

  39. T.H. Su, Y.J. Lin, Appl. Phys. Lett. 104, 153504 (2014)

    Article  ADS  Google Scholar 

  40. Y.J. Lin, Y.C. Lin, Appl. Phys. Lett. 105, 023506 (2014)

Download references

Acknowledgments

The authors acknowledge the support of the Ministry of Science and Technology of Taiwan (Contract No. 103-2112-M-018-003-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YJ., Zeng, JJ. & Chang, HC. Temperature-dependent electrical properties for graphene Schottky contact on n-type Si with and without sulfide treatment. Appl. Phys. A 118, 353–359 (2015). https://doi.org/10.1007/s00339-014-8740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8740-5

Keywords

Navigation