Skip to main content
Log in

Fabrication, performance and atmospheric stability of inverted ZnO nanoparticle/polymer solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanoparticles (NPs, ~5 nm) were first synthesized by a simple wet chemical method. A mixture of poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) was used as the photoactive layer, and an inverted solar cell with a structure of ITO/ZnO NPs/P3HT:PCBM/MoO3/Ag was fabricated. Its performance and stability in the ambient atmosphere were investigated in detail. The results showed that the fabricated solar cell under 100 mW/cm2 AM1.5 illumination exhibited a power conversion efficiency (PCE) of 0.28 %. In addition, illumination intensity had significant effect on open circuit voltage (V oc), short circuit current (J sc), fill factor (FF), and PCE of the fabricated solar cell. The dark storability (darkness, room temperature, and 50–60 % relative humidity) was shown to exceed 4,416 h without notable loss in PCE. The fabricated solar cell with excellent long-term stability was achieved in an ambient atmosphere; also, the stable mechanism of the solar cell in the ambient atmosphere was illuminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.J. Pauzauskie, P.D. Yang, Mater. Today 9, 36 (2006)

    Article  Google Scholar 

  2. F. Xu, L.T. Sun, Energy Environ. Sci. 4, 818 (2011)

    Article  Google Scholar 

  3. T. Reimer, I. Paulowicz, R. Röder, S. Kaps, O. Lupan, S. Chemnitz, W. Benecke, C. Ronning, R. Adelung, Y.K. Mishra, ACS Appl. Mater. Interfaces 6, 7806 (2014)

    Article  Google Scholar 

  4. Z.L. Yuan, Y.J. Ren, Physica E 48, 128 (2013)

    Article  ADS  Google Scholar 

  5. S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, J. Am. Chem. Soc. 135, 7394 (2013)

    Article  Google Scholar 

  6. D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Adv. Mater. 26, 1541 (2014)

    Article  Google Scholar 

  7. Z.L. Yuan, J.S. Yu, N.N. Wang, Y.D. Jiang, Curr. Appl. Phys. 12, 1278 (2012)

    Article  Google Scholar 

  8. V. Hrkac, L. Kienle, S. Kaps, A. Lotnyk, Y.K. Mishra, U. Schürmann, V. Duppel, B.V. Lotsch, R. Adelung, J. Appl. Crystallogr. 46, 396 (2013)

    Article  Google Scholar 

  9. Y.S. Fu, J. Sun, Y. Xie, J. Liu, H.L. Wang, X.W. Du, Mater. Sci. Eng. B 166, 196 (2010)

    Article  Google Scholar 

  10. G.D. Sharma, P. Suresh, P. Balaraju, S.K. Sharma, M.S. Roy, Synth. Met. 158, 400 (2008)

    Article  Google Scholar 

  11. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)

    Article  Google Scholar 

  12. K. Yao, L. Chen, Y.W. Chen, F. Li, P.S. Wang, J. Phys. Chem. C 116, 3486 (2012)

    Article  Google Scholar 

  13. W.J.E. Beek, M.M. Wienk, M. Kemerink, X. Yang, R.A.J. Janssen, J. Phys. Chem. B 109, 9505 (2005)

    Article  Google Scholar 

  14. J. Gilot, M.M. Wienk, R.A.J. Janssen, Appl. Phys. Lett. 90, 143512 (2007)

    Article  ADS  Google Scholar 

  15. B.N. Pal, P. Trottman, J. Sun, H.E. Katz, Adv. Funct. Mater. 18, 1832 (2008)

    Article  Google Scholar 

  16. A.N. Aleshin, E.L. Alexandrova, I.P. Shcherbakov, J. Phys. D Appl. Phys. 42, 105108 (2009)

    Article  ADS  Google Scholar 

  17. S.L. Bai, J.W. Hu, D.Q. Li, R.X. Luo, A.F. Chen, C.C. Liu, J. Mater. Chem. 21, 12288 (2011)

    Article  Google Scholar 

  18. Y.Z. Jin, J.P. Wang, B.Q. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)

    Article  ADS  Google Scholar 

  19. F.C. Krebs, Y. Thomann, R. Thomann, J.W. Andreasen, Nanotechnology 19, 424013 (2008)

    Article  ADS  Google Scholar 

  20. F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 715 (2008)

    Article  Google Scholar 

  21. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006)

    Article  ADS  Google Scholar 

  22. M. Jørgensen, K. Norrman, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008)

    Article  Google Scholar 

  23. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Adv. Mater. 24, 580 (2012)

    Article  Google Scholar 

  24. A. Manor, E.A. Katz, T. Tromholt, F.C. Krebs, Sol. Energy Mater. Sol. Cells 98, 491 (2012)

    Article  Google Scholar 

  25. M.R. Lilliedal, A.J. Medford, M.V. Madsen, K. Norrman, F.C. Krebs, Sol. Energy Mater. Sol. Cells 94, 2018 (2010)

    Article  Google Scholar 

  26. A. Manor, E.A. Katz, T. Tromholt, F.C. Krebs, Adv. Energy Mater. 1, 836 (2011)

    Article  Google Scholar 

  27. T. Tromholt, A. Manor, E.A. Katz, F.C. Krebs, Nanotechnology 22, 225401 (2011)

    Article  ADS  Google Scholar 

  28. F.C. Krebs, T. Tromholt, M. Jørgensen, Nanoscale 2, 873 (2010)

    Article  ADS  Google Scholar 

  29. J.P. Liu, K.L. Choy, X.H. Hou, J. Mater. Chem. 21, 1966 (2011)

    Article  Google Scholar 

  30. Z.L. Yuan, J.S. Yu, N.N. Wang, Y.D. Jiang, J. Mater. Sci. Mater. Electron. 22, 1730 (2011)

    Article  Google Scholar 

  31. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)

    Article  ADS  Google Scholar 

  32. C. Tao, S.P. Ruan, X.D. Zhang, G.H. Xie, L. Shen, X.Z. Kong, W. Dong, C.X. Liu, W.Y. Chen, Appl. Phys. Lett. 93, 193307 (2008)

    Article  ADS  Google Scholar 

  33. N.N. Wang, J.S. Yu, Y. Zang, J. Huang, Y.D. Jiang, Sol. Energy Mater. Sol. Cells 94, 263 (2010)

    Article  Google Scholar 

  34. J.S. Yu, N.N. Wang, Y. Zang, Y.D. Jiang, Sol. Energy Mater. Sol. Cells 95, 664 (2011)

    Article  Google Scholar 

  35. Z.L. Yuan, J.S. Yu, W.M. Ma, Y.D. Jiang, Appl. Phys. A 106, 511 (2012)

    Article  ADS  Google Scholar 

  36. S.S.V. Bavel, E. Sourty, G. With, J. Loos, Nano Lett. 9, 507 (2009)

    Article  ADS  Google Scholar 

  37. D.C. Olson, S.E. Shaheen, R.T. Collins, D.S. Ginley, J. Phys. Chem. C 111, 16670 (2007)

    Article  Google Scholar 

  38. K. Lee, J.Y. Kim, S.H. Park, S.H. Kim, S. Cho, A.J. Heeger, Adv. Mater. 19, 2445 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant No. 11304192), the Natural Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 2013JK1113), and the Scientific Research Foundation of Shaanxi University of Technology (Grant No. SLGQD13-9). The author also gratefully acknowledges the friendly help from Prof. Junsheng Yu, from School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z. Fabrication, performance and atmospheric stability of inverted ZnO nanoparticle/polymer solar cell. Appl. Phys. A 118, 75–81 (2015). https://doi.org/10.1007/s00339-014-8738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8738-z

Keywords

Navigation