Skip to main content
Log in

Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Non-isothermal deposition of uniform molten droplets as basic building blocks has a great influence on the geometric profile and microstructure of metallic components fabricated by the drop-based three-dimensional (3D) printing technology. In this paper, the thermal and dynamic behaviors of molten aluminum droplets during non-isothermal deposition were studied numerically and experimentally. The result shows that local solidification and interfacial re-melting occur during the initial period of non-isothermal deposition. The re-melting in microseconds depends greatly on the impacting droplet temperature, the deposition surface temperature, and the thermal contact resistance. Further, the coupling action of subsequent solidification and oscillation behaviors of aluminum droplet fixed on the target surface was also investigated. It is interesting to find that the formation and distribution of the solidified surface morphology, such as the typical micron-sized ripples, are significantly affected by layer-by-layer solidification and underdamped oscillation in the remaining molten metal. Based on the above research, a semiquantitative relationship between external morphology and internal microstructure was proposed, which was further certified by investigating the piled vertical columns. The works should be helpful for the process optimization and non-destructive detection of drop-based 3D printing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Radius of spherical droplet

a l :

Equivalent radius of remaining molten metal

c :

Specific heat

D r :

Spacing between ripples

H :

Height of deposited droplet

h’ :

Radiation heat transfer coefficient

h r :

Distance between ripple and deposition surface

k :

Thermal conductivity

L :

Latent heat of fusion

R :

Radius of spherical cap

R c :

Thermal contact resistance

t :

Time

t damp :

Viscous damping time

t l :

Oscillation period of remaining molten metal

t osc :

Inertial oscillation time

t spr :

Spreading time

T a :

Ambient temperature

T d :

Droplet temperature

T int :

Interface temperature

T t :

Target surface temperature

T sub :

Initial substrate surface temperature

V l :

Volume of remaining liquid

V cap′:

Volume of spherical cap above solidified layer

v :

Velocity

v s :

Velocity of solidification front

α :

Thermal diffusivity

σ :

Surface tension

σ′:

Stefan–Boltzmann constant, 5.67 × 10−8 W m−2 K−4

ε :

Emittance of 7075 aluminum alloy

γ :

Volume thermal expansion coefficient of 7075 aluminum alloy

μ :

Viscosity

ν :

Kinematic viscosity

ρ :

Density

θ :

Contact angle

Oh :

Ohnesorge number (\( = {\mu \mathord{\left/ {\vphantom {\mu {\sqrt {D\sigma \rho } }}} \right. \kern-0pt} {\sqrt {D\sigma \rho } }} \))

Re :

Reynolds number (\( = DV\rho /\mu \))

We :

Weber number (\( = DV^{2} \rho /\sigma \))

d :

Droplet

t :

Target surface

References

  1. Y. Yan, Z. Xiong, Y. Hu, S. Wang, R. Zhang, Mater. Lett. 57, 2623 (2003)

    Article  Google Scholar 

  2. M. Sugavaneswaran, G. Arumaikkannu, Mater. Des. 54, 779 (2014)

    Article  Google Scholar 

  3. A. Kantaros, D. Karalekas, Mater. Des. 50, 44 (2013)

    Article  Google Scholar 

  4. M. Kandyla, C. Pandis, S. Chatzandroulis, P. Pissis, I. Zergioti, Appl. Phys. A 110, 623 (2012)

    Article  ADS  Google Scholar 

  5. H. Kim, M. Duocastella, K. M. Charipar, R. C. Y. Auyeung, A. Piqué, Appl. Phys. A 113, 5 (2013)

  6. M. Vaezi, H. Seitz, S. Yang, Int. J. Adv. Manuf. Technol. 67, 1721 (2012)

    Article  Google Scholar 

  7. F.E. Wiria, J.Y.M. Shyan, P.N. Lim, F.G.C. Wen, J.F. Yeo, T. Cao, Mater. Des. 31, S101 (2010)

    Article  Google Scholar 

  8. L. Qi, Y. Chao, J. Luo, J. Zhou, X. Hou, H. Li, Int. J. Mach. Tools Manuf 56, 50 (2012)

    Article  Google Scholar 

  9. M. Fang, S. Chandra, C.B. Park, Rapid Prototyp. J. 14, 44 (2008)

    Article  Google Scholar 

  10. W. Cao, Y. Miyamoto, J. Mater. Process. Technol. 173, 209 (2006)

    Article  Google Scholar 

  11. F. Gao, A.A. Sonin, Proc. R. Soc. A Math. Phys. Eng. Sci. 444, 533 (1994)

    Article  ADS  Google Scholar 

  12. Y. Chao, L. Qi, H. Zuo, J. Luo, X. Hou, H. Li, Int. J. Mach. Tools Manuf 69, 38 (2013)

    Article  Google Scholar 

  13. V. Sobolev, J. Guilemany, Mater. Lett. 28, 331 (1996)

    Article  Google Scholar 

  14. V.V. Sobolev, J.M. Guilemany, Mater. Lett. 33, 315 (1998)

    Article  Google Scholar 

  15. C. Le Bot, E. Arquis, Int. J. Therm. Sci. 48, 412 (2009)

    Article  Google Scholar 

  16. C. Lebot, S. Vincent, E. Arquis, Int. J. Therm. Sci. 44, 219 (2005)

    Article  Google Scholar 

  17. N. Nikolopoulos, G. Strotos, K.-S.P. Nikas, M. Gavaises, A. Theodorakakos, M. Marengo, G.E. Cossali, At. Sprays 20, 909 (2010)

    Article  Google Scholar 

  18. N. Nikolopoulos, G. Strotos, K.-S.P. Nikas, A. Theodorakakos, M. Gavaises, M. Marengo, G.E. Cossali, At. Sprays 20, 935 (2010)

    Article  Google Scholar 

  19. S. Schiaffino, A.A. Sonin, Phys. Fluids 9, 3172 (1997)

    Article  ADS  Google Scholar 

  20. J.M. Waldvogel, D. Poulikakos, J. Heat Mass Transf. 40, 295 (1997)

    Article  MATH  Google Scholar 

  21. H. Li, P. Wang, L. Qi, H. Zuo, S. Zhong, X. Hou, Comput. Mater. Sci. 65, 291 (2012)

    Article  Google Scholar 

  22. D. Attinger, Z. Zhao, D. Poulikakos, J. Heat Transf. 122, 544 (2000)

    Article  Google Scholar 

  23. C.M. Megaridis, K. Boomsma, I.S. Bayer, AIChE J. 50, 1356 (2004)

    Article  Google Scholar 

  24. A. Kumar, S. Gu, S. Kamnis, Appl. Phys. A 109, 101 (2012)

    Article  ADS  Google Scholar 

  25. S. Haferl, D. Poulikakos, Int. J. Heat Mass Transf. 46, 535 (2003)

    Article  Google Scholar 

  26. S.D. Aziz, S. Chandra, Int. J. Heat Mass Transf. 43, 2841 (2000)

    Article  Google Scholar 

  27. Z. Hansong, L. Hejun, Q. Lehua, C. Yanpu, W. Pengyun, RARE Met. Mater. Eng. 42, 1596 (2013)

    Google Scholar 

  28. C.H. Amon, K.S. Schmaltz, R. Merz, F.B. Prinz, J. Heat Transf. 118, 164 (1996)

    Article  Google Scholar 

  29. Q. Xu, V.V. Gupta, E.J. Lavernia, Metall. Mater. Trans. B 30, 527 (1999)

    Article  Google Scholar 

  30. P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle, J. Therm. Spray Technol. 13, 337 (2004)

    Article  ADS  Google Scholar 

  31. T. Loulou, E. Artyukhin, J. Bardon, Int. J. Heat Mass Transf. 42, 2129 (1999)

    Article  Google Scholar 

  32. S. Haferl, V. Butty, D. Poulikakos, Int. J. Heat Mass Transf. 44, 3513 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the National Natural Science Foundation of China (51221001), the Defense Industrial Technology Development Program (A1120133026), the Doctoral Fund of Ministry of Education of China (20126102110022), and the Research Fund of the State Key Laboratory of Solidification Processing (NWPU) (85-TZ-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Hs., Li, Hj., Qi, Lh. et al. Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing. Appl. Phys. A 118, 327–335 (2015). https://doi.org/10.1007/s00339-014-8735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8735-2

Keywords

Navigation